Issue 2
Feb 2021
Turn off MathJax
Article Contents
Wang Jinjin, Zhu Qiuhao, Dong Jianfeng. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218
Citation: Wang Jinjin, Zhu Qiuhao, Dong Jianfeng. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

Research progress of electromagnetic properties of tunable chiral metasurfaces

doi: 10.12086/oee.2021.200218
Funds:

National Natural Science Foundation of China 61475079

More Information
  • Corresponding author: Dong Jianfeng, E-mail: dongjianfeng@nbu.edu.cn
  • Received Date: 12 Jun 2020
  • Rev Recd Date: 06 Aug 2020
  • Chiral metasurfaces are ultra-thin metamaterials composed of planar chiral cell structures with specific electromagnetic responses. They have attracted great attention due to their singular ability to control electromagnetic waves at will. With tunable materials incorporated into the metasurfaces design, one can realize tunable/reconfigurable metadevices with functionalities controlled by external stimuli, opening a new platform to dynamically manipulate electromagnetic waves. In this paper, we introduce some theoretical foundations of the electromagnetic properties of tunable/reconfigurable chiral metasurfaces. When a linearly polarized light enters a tunable chiral metasurface, it can be decomposed into left-handed circularly polarized (LCP) wave and right-handed circularly polarized (RCP) wave. By changing the dielectric constant and magnetic permeability of the medium through the external environment, the metadevices can dynamically control the response characteristics to various polarized lights, especially circularly polarized lights such as refractive index, dichroism, optical rotation, asymmetric transmission, etc. According to the properties of negative refractive index, circular dichroism, optical rotation, and asymmetric transmission controlled by the tunable chiral metasurfaces, we review the latest research progress. Finally, we put forward our own opinions on the possible future development directions and existing challenges of the rapidly developing field of the tunable chiral metasurface.

     

  • loading
  • [1]
    Choudhury S M, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces[J]. Nanophotonics, 2018, 7(6): 959-987. doi: 10.1515/nanoph-2017-0130
    [2]
    Chang S Y, Guo X X, Ni X J. Optical metasurfaces: progress and applications[J]. Annu Rev Mater Res, 2018, 48(1): 279-302. doi: 10.1146/annurev-matsci-070616-124220
    [3]
    Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380-479. doi: 10.1364/AOP.11.000380
    [4]
    Rizza C, Falco A D, Scalora M, et al. One-dimensional chirality: strong optical activity in epsilon-near-zero metamaterials[J]. Phys Rev Lett, 2015, 115(5): 057401. doi: 10.1103/PhysRevLett.115.057401
    [5]
    Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Phys Rev Lett, 2006, 97(16): 167401. doi: 10.1103/PhysRevLett.97.167401
    [6]
    Dong J F, Zhou J F, Koschny T, et al. Bi-layer cross chiral structure with strong optical activity and negative refractive index[J]. Opt Express, 2009, 17(16): 14172-14179. doi: 10.1364/OE.17.014172
    [7]
    Lin H T, Chang C Y, Cheng P J, et al. Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15996-16004. doi: 10.1021/acsami.8b01472
    [8]
    Lv T T, Li Y X, Ma H F, et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition[J]. Sci Rep, 2016, 6: 23186. doi: 10.1038/srep23186
    [9]
    Mandal P, Mohan S, Sharma S, et al. Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application[J]. Photonics Nanostruct-Fundam Appl, 2019, 37: 100735. doi: 10.1016/j.photonics.2019.100735
    [10]
    Sorathiya V, Dave V. Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency[J]. Opt Commun, 2020, 456: 124581. doi: 10.1016/j.optcom.2019.124581
    [11]
    Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
    [12]
    Mao L B, Liu K, Zhang S, et al. Extrinsically 2D-chiral metamirror in near-infrared region[J]. ACS Photonics, 2020, 7(2): 375-383. doi: 10.1021/acsphotonics.9b01211
    [13]
    Wu R Y, Cui T J. Microwave metamaterials: from exotic physics to novel information systems[J]. Front Inform Technol Electron Eng, 2020, 21(1): 4-26. doi: 10.1631/FITEE.1900465
    [14]
    Plum E, Liu X X, Fedotov V A, et al. Metamaterials: optical activity without chirality[J]. Phys Rev Lett, 2009, 102(11): 113902. doi: 10.1103/PhysRevLett.102.113902
    [15]
    Zhang S, Fan W J, Panoiu N C, et al. Demonstration of near-infrared negative-index materials[J]. Phys Rev Lett, 2005, 95(13): 137404. doi: 10.1103/PhysRevLett.95.137404
    [16]
    Cao T, Simpson R E, Cryan M J. Study of tunable negative index metamaterials based on phase-change materials[J]. J Opt Soc Am B, 2013, 30(2): 439-444. doi: 10.1364/JOSAB.30.000439
    [17]
    Li W L, Meng Q L, Huang R S, et al. Thermally tunable broadband terahertz metamaterials with negative refractive index[J]. Opt Commun, 2018, 412: 85-89. doi: 10.1016/j.optcom.2017.11.076
    [18]
    Ling F, Zhong Z Q, Huang R S, et al. A broadband tunable terahertz negative refractive index metamaterial[J]. Sci Rep, 2018, 8: 9843. doi: 10.1038/s41598-018-28221-3
    [19]
    Ling F, Zhong Z Q, Zhang Y, et al. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level[J]. Opt Express, 2018, 26(23): 30085-30099. doi: 10.1364/OE.26.030085
    [20]
    Luo Y B, Zeng Q S, Yan X, et al. A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna[J]. Microw Opt Technol Lett, 2019, 61(12): 2766-2772. doi: 10.1002/mop.31970
    [21]
    Iwai A, Righetti F, Wang B, et al. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial[J]. Phys Plasmas, 2020, 27(2): 023511. doi: 10.1063/1.5112077
    [22]
    Huang Y J, Xie X, Pu M B, et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Adv Opt Mater, 2020, 8(11): 1902061. doi: 10.1002/adom.201902061
    [23]
    Cao T, Zhang L, Simpson R E, et al. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials[J]. Opt Express, 2013, 21(23): 27841-27851. doi: 10.1364/OE.21.027841
    [24]
    Cao T, Li Y, Wei C W, et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials[J]. Opt Express, 2017, 25(9): 9911-9925. doi: 10.1364/OE.25.009911
    [25]
    Yin X H, Schäferling M, Michel A K U, et al. Active chiral plasmonics[J]. Nano Lett, 2015, 15(7): 4255-4260. doi: 10.1021/nl5042325
    [26]
    Gao F, Zhu J W, Ma H F, et al. Tunable circular dichroism of chiral metamaterial based on phase transition of vanadium dioxide (VO2)[J]. Mater Res Express, 2020, 7(4): 045802. doi: 10.1088/2053-1591/ab89de
    [27]
    Wang T K, Wang Y K, Luo L N, et al. Tunable circular dichroism of achiral graphene plasmonic structures[J]. Plasmonics, 2017, 12(3): 829-833. doi: 10.1007/s11468-016-0331-1
    [28]
    Kim T T, Oh S S, Kim H D, et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Sci Adv, 2017, 3(9): e1701377. doi: 10.1126/sciadv.1701377
    [29]
    Huang Z, Yao K, Su G X, et al. Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation[J]. Opt Lett, 2018, 43(11): 2636-2639. doi: 10.1364/OL.43.002636
    [30]
    Vila M, Hung N T, Roche S, et al. Tunable circular dichroism and valley polarization in the modified Haldane model[J]. Phys Rev B, 2019, 99(16): 161404. doi: 10.1103/PhysRevB.99.161404
    [31]
    Zhou S E, Lai P T, Dong G H, et al. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime[J]. Opt Express, 2019, 27(11): 15359-15367. doi: 10.1364/OE.27.015359
    [32]
    Yao Z F, Lu M J, Zhang C Y, et al. Dynamically tunable and transmissive linear to circular polarizer based on graphene metasurfaces[J]. J Opt Soc Am B, 2019, 36(12): 3302-3306. doi: 10.1364/JOSAB.36.003302
    [33]
    Amin M, Siddiqui O, Farhat M. Linear and circular dichroism in graphene-based reflectors for polarization control[J]. Phys Rev Appl, 2020, 13(2): 024046. doi: 10.1103/PhysRevApplied.13.024046
    [34]
    Hong Q L, Xu W, Zhang J F, et al. Optical activity in monolayer black phosphorus due to extrinsic chirality[J]. Opt Lett, 2019, 44(7): 1774-1777. doi: 10.1364/OL.44.001774
    [35]
    Yin S T, Ji W, Xiao D, et al. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces[J]. Opt Commun, 2019, 448: 10-14. doi: 10.1016/j.optcom.2019.05.006
    [36]
    Peng R H, Liu J X, Xiao D, et al. Microfluid-enabled fine tuning of circular dichroism from chiral metasurfaces[J]. J Phys D: Appl Phys, 2019, 52(41): 415102. doi: 10.1088/1361-6463/ab3129
    [37]
    Jing L Q, Wang Z J, Zheng B, et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism[J]. NPG Asia Mater, 2018, 10(9): 888-898. doi: 10.1038/s41427-018-0082-x
    [38]
    Liu Z G, Xu Y, Ji C Y, et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J]. Adv Mater, 2020, 32(8): 1907077. doi: 10.1002/adma.201907077
    [39]
    Zhou L, Wang Y K, Zhou J X, et al. Tunable circular dichroism of stretchable chiral metamaterial[J]. Appl Phys Express, 2020, 13(4): 042008. doi: 10.35848/1882-0786/ab8054
    [40]
    Zanotto S, Blancato A, Buchheit A, et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide[J]. Adv Opt Mater, 2017, 5(2): 1600732. doi: 10.1002/adom.201600732
    [41]
    Qu Y, Zhang Z D, Fu T, et al. Dielectric tuned circular dichroism of L-shaped plasmonic metasurface[J]. J Phys D: Appl Phys, 2017, 50(50): 504001. doi: 10.1088/1361-6463/aa95f6
    [42]
    Hu J P, Zhao X N, Lin Y, et al. All-dielectric metasurface circular dichroism waveplate[J]. Sci Rep, 2017, 7: 41893. doi: 10.1038/srep41893
    [43]
    Cao T, Wei C W, Mao L B. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism[J]. Sci Rep, 2015, 5: 14666. doi: 10.1038/srep14666
    [44]
    Zhao J Y, Zhang J F, Zhu Z H, et al. Tunable asymmetric transmission of THz wave through a graphene chiral metasurface[J]. J Opt, 2016, 18(9): 095001. doi: 10.1088/2040-8978/18/9/095001
    [45]
    Jiang H, Zhao W Y, Jiang Y Y. High-efficiency tunable circular asymmetric transmission using dielectric metasurface integrated with graphene sheet[J]. Opt Express, 2017, 25(17): 19732-19739. doi: 10.1364/OE.25.019732
    [46]
    Shokati E, Asgari S, Granpayeh N. Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor[J]. IEEE Sens J, 2019, 19(21): 9991-9996. doi: 10.1109/JSEN.2019.2925963
    [47]
    Zhou J X, Wang Y K, Lu M J, et al. Giant enhancement of tunable asymmetric transmission for circularly polarized waves in a double-layer graphene chiral metasurface[J]. RSC Adv, 2019, 9(58): 33775-33780. doi: 10.1039/C9RA05760A
    [48]
    Zhao J X, Song J L, Xu T Y, et al. Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface[J]. Opt Express, 2019, 27(7): 9773-9781. doi: 10.1364/OE.27.009773
    [49]
    Song Q H, Wu P C, Zhu W M, et al. Split archimedean spiral metasurface for controllable GHz asymmetric transmission[J]. Appl Phys Lett, 2019, 114(15): 151105. doi: 10.1063/1.5084329
    [50]
    Hajian H, Ghobadi A, Serebryannikov A E, et al. VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption[J]. J Opt Soc Am B, 2019, 36(6): 1607-1615. doi: 10.1364/JOSAB.36.001607
    [51]
    Hajian H, Ghobadi A, Serebryannikov A E, et al. Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials[J]. J Appl Phys, 2019, 126(19): 193102. doi: 10.1063/1.5118887
    [52]
    Asgari S, Rahmanzadeh M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings[J]. Opt Commun, 2020, 456: 124623. doi: 10.1016/j.optcom.2019.124623
    [53]
    Li T, Hu F R, Qian Y X, et al. Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave[J]. Chin Phys B, 2020, 29(2): 024203. doi: 10.1088/1674-1056/ab5ef8
  • 加载中

Catalog

    Figures(9)

    Article Metrics

    Article views(280) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return