Citation: | Cao Zhi, Shang Lidan, Yin Dong. A weakly supervised learning method for vehicle identification code detection and recognition[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200270. doi: 10.12086/oee.2021.200270 |
[1] |
Subedi B, Yunusov J, Gaybulayev A, et al. Development of a low-cost industrial OCR system with an end-to-end deep learning technology[J]. IEMEK J Embedded Syst Appl, 2020, 15(2): 51–60.
|
[2] |
Rashtehroudi A R, Shahbahrami A, Akoushideh A. Iranian license plate recognition using deep learning[C]//Proceedings of the 2020 International Conference on Machine Vision and Image Processing (MVIP), 2020: 1–5.
|
[3] |
Naz S, Khan N H, Zahoor S, et al. Deep OCR for Arabic script‐based language like Pastho[J]. Expert Syst, 2020, 37(5): e12565. doi: 10.1111/exsy.12565
|
[4] |
Liao M H, Wan Z Y, Yao C, et al. Real-time scene text detection with differentiable binarization[C]//Proceedings of the AAAI, 2020: 11474–11481.
|
[5] |
Liu Y L, Chen H, Shen C H, et al. ABCNet: real-time scene text spotting with adaptive Bezier-curve network[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9809–9818.
|
[6] |
Tian Z, Huang W L, He T, et al. Detecting text in natural image with connectionist text proposal network[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 56–72.
|
[7] |
Ma J Q, Shao W Y, Ye H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans Multimed, 2018, 20(11): 3111–3122. doi: 10.1109/TMM.2018.2818020
|
[8] |
Zhou X Y, Yao C, Wen H, et al. East: an efficient and accurate scene text detector[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5551–5560.
|
[9] |
Long S B, Ruan J Q, Zhang W J, et al. Textsnake: a flexible representation for detecting text of arbitrary shapes[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 20–36.
|
[10] |
Baek Y, Lee B, Han D Y, et al. Character region awareness for text detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9365–9374.
|
[11] |
Shi B G, Yang M K, Wang X G, et al. ASTER: an attentional scene text recognizer with flexible rectification[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(9): 2035–2048. doi: 10.1109/TPAMI.2018.2848939
|
[12] |
Wang Q Q, Huang Y, Jia W J, et al. FACLSTM: ConvLSTM with focused attention for scene text recognition[J]. Sci China Inf Sci, 2020, 63(2): 120103. doi: 10.1007/s11432-019-2713-1
|
[13] |
Shi B G, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 39(11): 2298–2304. doi: 10.1109/TPAMI.2016.2646371
|
[14] |
Liao M H, Zhang J, Wan Z, et al. Scene text recognition from two-dimensional perspective[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 8714–8721.
|
[15] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 91–99.
|
[16] |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21–37.
|
[17] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097–1105.
|
[18] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Comput, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[19] |
Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd International Conference on Machine Learning, 2006: 369–376.
|
[20] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[Z]. arXiv: 1409.1556, 2014.
|
[21] |
Luo W J, Li Y J, Urtasun R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 4905–4913.
|
[22] |
Zhu X Z, Hu H, Lin S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308–9316.
|
[23] |
Gupta A, Vedaldi A, Zisserman A. Synthetic data for text localisation in natural images[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2315–2324.
|
[24] |
Karatzas D, Shafait F, Uchida S, et al. ICDAR 2013 robust reading competition[C]//Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, 2013: 1484–1493.
|
[25] |
Zhang S Y, Lin M D, Chen T S, et al. Character proposal network for robust text extraction[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016: 2633–2637.
|
[26] |
Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Trans Pattern Anal Mach Intell, 1991, 13(6): 583–598. doi: 10.1109/34.87344
|
[27] |
Kingma D P, Ba J. Adam: a method for stochastic optimization[Z]. arXiv: 1412.6980, 2014.
|