Citation: | DI Yu, LI Ying. The Application and Research Progress of Artificial Intelligence in Corneal Related Diseases[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 761-767. doi: 10.12290/xhyxzz.2020-0098 |
[1] |
Rahimy E. Deep learning application in ophthalmology[J]. Curr Opin Ophthalmol, 2018, 29: 254-260. doi: 10.1097/ICU.0000000000000470
|
[2] |
Lawrence DR, Palacios-González C, Harris J. Artificial intelligence[J]. Camb Q Healthc Ehics, 2016, 25: 250-261. doi: 10.1017/S0963180115000559
|
[3] |
陈有信, 张碧磊, 张弘哲. 眼科人工智能技术的现状与问题[J]. 中华眼底病杂志, 2019, 35: 119-123.
Chen YX, Zhang BL, Zhang HZ. Insights and prospectives of ophthalmologic artificial intelligence technology[J]. Zhonghua Yandibing Zazhi, 2019, 35: 119-123.
|
[4] |
Gulshan V, Peng L, Coram M, et al. Development and validation of deep learning algorithm for detection of retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316: 2402-2410. doi: 10.1001/jama.2016.17216
|
[5] |
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural network[J]. JAMA Ophthalmol, 2017, 135: 1170-1176. doi: 10.1001/jamaophthalmol.2017.3782
|
[6] |
Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103: 1553-1560. doi: 10.1136/bjophthalmol-2019-314729
|
[7] |
Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier[J]. Ophthalmology, 2016, 123: 1974-1980. doi: 10.1016/j.ophtha.2016.05.029
|
[8] |
Wu XH, Liu L, Zhao L, et al. Application of artificial intelligence in anterior segment ophthalmic disease: diversity and standardization[J]. Ann Transl Med, 2020, 8: 714. doi: 10.21037/atm-20-976
|
[9] |
Mahesh Kumar SV, Gunasundari R. Computer-aided diagnosis of anterior segment eye abnormalities using visible wavelength image analysis based machine learning[J]. J Med Syst, 2018, 42: 128. doi: 10.1007/s10916-018-0980-z
|
[10] |
Long EP, Lin HT, Liu ZZ, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 2017, 1: 0024. doi: 10.1038/s41551-016-0024
|
[11] |
Fu H, Baskaran M, Xu Y, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images[J]. Am J Ophthalmol, 2019, 203: 37-45. doi: 10.1016/j.ajo.2019.02.028
|
[12] |
Aloudat M, Faezipour M, El-Sayed A. High intraocular pressure detection from frontal eye images: a machine lean-ing based approach[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018: 5406-5409. http://www.ncbi.nlm.nih.gov/pubmed/30441559
|
[13] |
Godefrooij DA, de Wit GA, Uiterwaal CS, et al. Age-Specific incidence and prevalence of keratoconus: a nationwide registration study[J]. Am J Ophthalmol, 2017, 175: 169-172. doi: 10.1016/j.ajo.2016.12.015
|
[14] |
de Sanctis U, Loiacono C, Richiardi L, et al. Sensitivity and specificity of posterior cornea elevation measure by Pentacam in discriminating keratoconus/subclinical keratoconus[J]. Ophthalmology, 2008, 115: 1534-1539. doi: 10.1016/j.ophtha.2008.02.020
|
[15] |
Gordon-Shaag A, Millodot M, Ifrah R, et al. aberrations and tomography in normal, keratoconus-suspect, and keratoconic eyes[J]. Optom Vis Sci, 2012, 89: 411-418. doi: 10.1097/OPX.0b013e318249d727
|
[16] |
Kuo BI, Chang WY, Liao TS, et al. Keratoconus screening based on deep learning approach of corneal topography[J]. Transl Vis Sci Technol, 2020, 25: 53. http://www.researchgate.net/publication/345453287_Keratoconus_Screening_Based_on_Deep_Learning_Approach_of_Corneal_Topography
|
[17] |
Kamiya K, Ayatsuka Y, Kato Y, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study[J]. BMJ Open, 2019, 9: e021313. http://bmjopen.bmj.com/content/9/9/e031313.full
|
[18] |
Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm using Convolutional neural networks[J]. Comput Intell Neurosci, 2019: 8162567. http://downloads.hindawi.com/journals/cin/2019/8162567.pdf
|
[19] |
Issarti I, Consejo A, Jiménez-García M, et al. Computer aided diagnosis for suspect keratoconus detection[J]. Comput Biol Med, 2019, 109: 33-42. doi: 10.1016/j.compbiomed.2019.04.024
|
[20] |
Yousefi S, Yousefi E, Takahashi H, et al. Keratoconus severity identification using unsupervised machine learning[J]. PLoS One, 2018, 13: e0205998. doi: 10.1371/journal.pone.0205998
|
[21] |
Hidalgo IR, Rozema JJ, Saad A, et al. Validation of an objective keratoconus detection system implemented in a scheimpflug Tomographer and comparison with other methods[J]. Cornea, 2017, 36: 689-695. doi: 10.1097/ICO.0000000000001194
|
[22] |
Hidalgo IR, Rodrigues P, Rozema JJ, et al. Evaluation of a Machine-Learning classifier for keratoconus detection based on scheimpflug tomography[J]. Cornea, 2016, 35: 827-832. doi: 10.1097/ICO.0000000000000834
|
[23] |
Kovács I, Miháltz K, Kránitz K, et al. Accuracy of machine learning classifiers using bilateral data from a scheimpflug camera for identifying eyes with preclinical signs of keratoconus[J]. J Cataract Refract Surg, 2016, 42: 275-283. doi: 10.1016/j.jcrs.2015.09.020
|
[24] |
Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification[J]. Am J Ophthalmol, 2013, 156: 237-246. doi: 10.1016/j.ajo.2013.03.034
|
[25] |
Arbelaez MC, Versaci F, Vestri G, et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data[J]. Ophthalmology, 2012, 119: 2231-2238. doi: 10.1016/j.ophtha.2012.06.005
|
[26] |
Souza MB, Medeiros FM, Souza DB, et al. Evaluation of machine learning classifiers in keratoconus detection from Orbscan Ⅱ examinations[J]. Clnics(Sap Paulo), 2010, 65: 1223-1228. http://www.onacademic.com/detail/journal_1000040504536110_7e67.html
|
[27] |
Twa M, Parthasarathy S, Cynthia R, et al. Automated decision tree classification of corneal shape[J]. Optom Vis Sci, 2005, 82: 1038-1046. doi: 10.1097/01.opx.0000192350.01045.6f
|
[28] |
Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography[J]. J Biomed Inform, 2002, 35: 151-159. doi: 10.1016/S1532-0464(02)00513-0
|
[29] |
Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach[J]. Invest Ophthalmol Vis Sci, 1997, 38: 2290-2299. http://www.researchgate.net/profile/Stephen_Klyce/publication/13885016_Current_keratoconus_detection_methods_compared_with_a_neural_network_approach/links/53f33d3d0cf2dd48950c9d4e
|
[30] |
王雁, 李晶. 正确应对角膜屈光手术发展中的问题及挑战[J]. 中华眼科杂志, 2018, 54: 3-6.
Wang Y, Li J. Problems and challenges in the development of corneal refractive surgery[J]. Zhonghua Yanke Zazhi, 2018, 54: 3-6.
|
[31] |
Sayegh FN. Age and refractive in 46, 000 patients as a potential predictor of refractive stability after refractive surgery[J]. J Refract Surg, 2009, 25: 747-751. doi: 10.3928/1081597X-20090707-10
|
[32] |
Saad A, Gatinel D. Combining Placido and corneal wavefront data for the detection of forme fruste keratoconus[J]. J Refract Surg, 2016, 32: 510-516. doi: 10.3928/1081597X-20160523-01
|
[33] |
Lopes BT, Ramos IC, Salomão MQ, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence[J]. Am J Ophthalmol, 2018, 195: 223-232. doi: 10.1016/j.ajo.2018.08.005
|
[34] |
Yoo TK, Ryu IH, Lee GY, et al. Adopting machine learn-ing to automatically identify candidate patients for corneal refractive surgery[J]. NPJ Digit Med, 2019, 2: 59. doi: 10.1038/s41746-019-0135-8
|
[35] |
Cui T, Wang Y, Ji SF, et al. Applying Machine Learning Techniques in Prediction and Analysis for SMILE Treatment[J]. Am J Ophthalmol, 2019, 210: 71-77. http://www.sciencedirect.com/science/article/pii/S0002939419305082
|
[36] |
Ung L, Bispo PJM, Shanbhag SS, et al. The persistent dilemma of microbial keratitis: global burden, diagnosis, and antimicrobial resistance[J]. Surv Ophthalmol, 2019, 64: 255-271. doi: 10.1016/j.survophthal.2018.12.003
|
[37] |
Saini JS, Jain AK, Kumar S, et al. Neural network approach to classify infective keratitis[J]. Curr Eye Res, 2003, 27: 111-116. doi: 10.1076/ceyr.27.2.111.15949
|
[38] |
Wu XL, Qiu QC, Liu Z, et al. Hyphae Detection in Fungal Keratitis Images With Adaptive Robust Binary Pattern[J]. IEEE Access, 2018, 6: 13449-13460. doi: 10.1109/ACCESS.2018.2808941
|
[39] |
Liu Z, Cao YK, Li YJ, et al. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network[J]. Comput Methods Programs Biomed, 2020, 187: 105019. doi: 10.1016/j.cmpb.2019.105019
|
[40] |
刁玉梅, 洪晶. 角膜后弹力层内皮移植术的研究进展[J]. 中华眼科杂志, 2015, 51: 544-547. doi: 10.3760/cma.j.issn.0412-4081.2015.07.018
Diao YM, Hong J. Research advances of Descemet's membrane endothelial keratoplasty[J]. Zhonghua Yanke Zazhi, 2015, 51: 544-547. doi: 10.3760/cma.j.issn.0412-4081.2015.07.018
|
[41] |
Treder M, Lauermann JL, Alnawaiseh M, et al. Using Deep Learning in Automated Detection of Graft Detachment in Descemet Membrane Endothelial Keratoplasty: A Pilot Study[J]. Cornea, 2019, 38: 157-161. doi: 10.1097/ICO.0000000000001776
|
[42] |
Hayashi T, Hitoshi T, Masumoto H, et al. A Deep Learning Approach in Rebubbling After Descemet's Membrane Endothelial Keratoplasty[J]. Eye Contact Lens, 2020, 46: 121-126 doi: 10.1097/ICL.0000000000000634
|
[43] |
Dabbah MA, Graham J, Petropoulos I, et al. Dual-Model Automatic Detection of Nerve-Fibres in Corneal Confocal Microscopy Images[J]. Med Image Comput Comput Assist Inter, 2010, 13: 300-307. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=PMC3066470&blobtype=pdf
|
[44] |
Chen X, Graham J, Dabbah MA, et al. An Automatic Tool for Quantification of Nerve Fibres in Corneal Confocal Microscopy Images[J]. IEEE Trans Biomed Eng, 2017, 64: 786-794. doi: 10.1109/TBME.2016.2573642
|
[45] |
Li Q, Zhong Y, Zhang T, et al. Quantitative analysis of corneal nerve fibers in type 2 diabetics with and without diabetic peripheral neuropathy: Comparison of manual and automated assessments[J]. Diabetes Res Clin Pract, 2019, 151: 33-38. doi: 10.1016/j.diabres.2019.03.039
|
[46] |
Lopez YP, Aguilera LR. Automatic classification of pterygium-non pterygium images using deep learning[M/OL]. (2019-09-28). [2020-12-27]. https://link.springer.com/chapter/10.1007%2F978-3-030-32040-9_40.
|
[47] |
Zulkifley MA, Abdani SR, Zulkifley NH. Pterygium-Net: a deep learning approach to pterygium detection and localization[J]. Multimed Tools Appl, 2019, 78: 34563-34584. doi: 10.1007/s11042-019-08130-x
|
[48] |
Wan Zaki WMD, Mat Daud M, Abdani SR, et al. Automated pterygium detection method of anterior segment photographed images[J]. Comput Methods Programs Biomed, 2018, 154: 71-78. doi: 10.1016/j.cmpb.2017.10.026
|