Citation: | YAN Rui, CHEN Limeng, LI Jintao, REN Fei. Research Progress of Cancer Classification Based on Deep Learning and Histopathological Images[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 742-748. doi: 10.12290/xhyxzz.2021-0452 |
[1] |
Siegel RL, Miller KD, Dvm AJ. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69: 7-34. doi: 10.3322/caac.21551
|
[2] |
卞修武, 平轶芳. 我国病理学科发展面临的挑战和机遇[J]. 第三军医大学学报, 2019, 41: 1815-1817.
|
[3] |
Xing F, Yang L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review[J]. IEEE Rev Biomed Eng, 2016, 9: 234-263. doi: 10.1109/RBME.2016.2515127
|
[4] |
唐娇, 梁毅雄, 邹北骥, 等. 基于级联分类器的乳腺癌病理学图像中有丝分裂检测[J]. 计算机应用研究, 2016, 33: 3876-3879. doi: 10.3969/j.issn.1001-3695.2016.12.079
|
[5] |
Chen H, Qi X, Yu L, et al. Dcan: Deep contour-aware networks for accurate gland segmentation[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016: 2487-2496.
|
[6] |
Zheng Y, Jiang Z, Xie F, et al. Diagnostic regions attention network (dra-net) for histopathology wsi recommendation and retrieval[J]. IEEE Trans Med Imaging, 2021, 40: 1090-1103. doi: 10.1109/TMI.2020.3046636
|
[7] |
Zhou SK, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: Image traits, technology trends, case studies with progress highlights, and future promises[J]. arXiv preprint arXiv, 2020: 2008.09104.
|
[8] |
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. doi: 10.1016/j.media.2017.07.005
|
[9] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv, 2014: 1409.1556.
|
[10] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Cision and Pattern Recognition, 2016: 770-778.
|
[11] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
[12] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[13] |
Chollet F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
|
[14] |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
|
[15] |
Schuster M, Paliwal KK. Bidirectional recurrent neural networks[M]. New Jersey, USA: IEEE Press, 1997.
|
[16] |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43: 755-780. doi: 10.11897/SP.J.1016.2020.00755
|
[17] |
Carbonneau MA, Cheplygina V, Granger E, et al. Multiple instance learning: A survey of problem characteristics and applications[J]. Pattern Recognition, 2018, 77: 329-353. doi: 10.1016/j.patcog.2017.10.009
|
[18] |
Zhou ZH. A brief introduction to weakly supervised learning[J]. Nat Sci Rev, 2018, 5: 44-53. doi: 10.1093/nsr/nwx106
|
[19] |
Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning[C]. International conference on machine learning PMLR, 2018: 2127-2136.
|
[20] |
Spanhol FA, Oliveira LS, Petitjean C, et al. Breast cancer histopathological image classification using convolutional neural networks[C] International Joint Conference on Neural Networks, 2016: 717-726.
|
[21] |
Bayramoglu N, Kannala J, Heikkilä J. Deep learning for magnification independent breast cancer histopathology image classification[C]. International Conference on Pattern Recognition, 2017: 2440-2445.
|
[22] |
Araújo T, Aresta G, Castro E, et al. Classification of breast cancer histology images using convolutional neural networks[J]. PLoS One, 2017, 12: e0177544. doi: 10.1371/journal.pone.0177544
|
[23] |
Vesal S, Ravikumar N, Davari AA, et al. Classification of breast cancer histology images using transfer learning[C]. International Conference Image Analysis and Recognition, 2018: 812-819.
|
[24] |
Vang YS, Chen Z, Xie X. Deep learning framework for multi-class breast cancer histology image classification[C]. International Conference Image Analysis and Recognition, 2018: 914-922.
|
[25] |
Rakhlin A, Shvets A, Iglovikov V, et al. Deep convolutional neural networks for breast cancer histology image analysis[C]. International Conference Image Analysis and Recognition, 2018: 737-744.
|
[26] |
Yan R, Li J, Rao X, et al. Nanet: Nuclei-aware network for grading of breast cancer in he stained pathological images[C]. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020: 865-870.
|
[27] |
Shaban M, Awan R, Fraz MM, et al. Context-aware convolutional neural network for grading of colorectal cancer histology images[J]. IEEE Transactions on Medical Imaging, 2020: 2395-2405.
|
[28] |
Yan R, Ren F, Wang Z, et al. Breast cancer histopathological image classification using a hybrid deep neural network[J]. Methods, 2020, 173: 52-60. doi: 10.1016/j.ymeth.2019.06.014
|
[29] |
Zhou Y, Graham S, Alemi Koohbanani N, et al. Cgc-net: Cell graph convolutional network for grading of colorectal cancer histology images[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
|
[30] |
Wang X, Chen H, Gan C, et al. Weakly supervised deep learning for whole slide lung cancer image analysis[J]. IEEE Trans Cybern, 2019, 50: 3950-3962. http://www.ncbi.nlm.nih.gov/pubmed/31484154
|
[31] |
Nagpal K, Foote D, Tan F, et al. Development and validation of a deep learning algorithm for gleason grading of prostate cancer from biopsy specimens[J]. JAMA Oncol, 2020, 6: 1372-1380. doi: 10.1001/jamaoncol.2020.2485
|
[32] |
Chen H, Han X, Fan X, et al. Rectified cross-entropy and upper transition loss for weakly supervised whole slide image classifier[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019: 351-359.
|
[33] |
Wang S, Zhu Y, Yu L, et al. Rmdl: Recalibrated multi-instance deep learning for whole slide gastric image classification[J]. Med Image Anal, 2019, 58: 101549. doi: 10.1016/j.media.2019.101549
|
[34] |
Chikontwe P, Kim M, Nam SJ, et al. Multiple instance learning with center embeddings for histopathology classification[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020: 519-528.
|
[35] |
Raju A, Yao J, Haq MM, et al. Graph attention multi-instance learning for accurate colorectal cancer staging[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020: 529-539.
|
[36] |
Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25: 1301-1309. doi: 10.1038/s41591-019-0508-1
|
[37] |
Spanhol FA, Oliveira LS, Petitjean C, et al. A dataset for breast cancer histopathological image classification[J]. IEEE Trans Biomed Eng, 2016, 63: 1455-1462. doi: 10.1109/TBME.2015.2496264
|
[38] |
Aresta G, Araújo T, Kwok S, et al. Bach: Grand challenge on breast cancer histology images[J]. Med Image Anal, 2019, 56: 122-139. doi: 10.1016/j.media.2019.05.010
|
[39] |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24: 1559-1567. doi: 10.1038/s41591-018-0177-5
|
[40] |
Adnan M, Kalra S, Tizhoosh HR. Representation learning of histopathology images using graph neural networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 202: 988-989.
|