Citation: | HAN Xiaowei, LI Ming, ZHANG Bing. Application of Artificial Intelligence in Neuroimaging of Stroke[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 749-754. doi: 10.12290/xhyxzz.2021-0491 |
[1] |
Soun JE, Chow DS, Nagamine M, et al. Artificial Intelligence and Acute Stroke Imaging[J]. AJNR Am J Neuroradiol, 2021, 42: 2-11. doi: 10.3174/ajnr.A6883
|
[2] |
Yedavalli VS, Tong E, Martin D, et al. Artificial intelli-gence in stroke imaging: current and future perspectives[J]. Clin Imaging, 2021, 69: 246-254. doi: 10.1016/j.clinimag.2020.09.005
|
[3] |
Patel UK, Anwar A, Saleem S, et al. Artificial intelligence as an emerging technology in the current care of neurological disorders[J]. J Neurol, 2021, 268: 1623-1642. doi: 10.1007/s00415-019-09518-3
|
[4] |
Zhu G, Jiang B, Chen H, et al. Artificial Intelligence and Stroke Imaging: A West Coast Perspective[J]. Neuroimaging Clin N Am, 2020, 30: 479-492. doi: 10.1016/j.nic.2020.07.001
|
[5] |
Herrgårdh T, Madai VI, Kelleher JD, et al. Hybrid modell-ing for stroke care: Review and suggestions of new approa-ches for risk assessment and simulation of scenarios[J]. Neuroimage Clin, 2021, 31: 102694. doi: 10.1016/j.nicl.2021.102694
|
[6] |
Duong MT, Rauschecker AM, Mohan S. Diverse Applications of Artificial Intelligence in Neuroradiology[J]. Neuroimaging Clin N Am, 2020, 30: 505-516. doi: 10.1016/j.nic.2020.07.003
|
[7] |
Kamal H, Lopez V, Sheth SA. Machine Learning in Acute Ischemic Stroke Neuroimaging[J]. Front Neurol, 2018, 9: 945. doi: 10.3389/fneur.2018.00945
|
[8] |
Ho KC, Speier W, El-Saden S, et al. Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features[J]. AMIA Annu Symp Proc, 2017, 2017: 892-901. http://zerista.s3.amazonaws.com/item_files/3ea6/attachments/405195/original/101217_amia_presentation1.13_kch.pdf
|
[9] |
Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks[J]. Neuroimage Clin, 2017, 15: 633-643. doi: 10.1016/j.nicl.2017.06.016
|
[10] |
Garg R, Oh E, Naidech A, et al. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing[J]. J Stroke Cerebrovasc Dis, 2019, 28: 2045-2051. doi: 10.1016/j.jstrokecerebrovasdis.2019.02.004
|
[11] |
Bouts MJ, Tiebosch IA, van der Toorn A, et al. Early Identification of Potentially Salvageable Tissue with MRI-Based Predictive Algorithms after Experimental Ischemic Stroke[J]. J Cereb Blood Flow Metab, 2013, 33: 1075-1082. doi: 10.1038/jcbfm.2013.51
|
[12] |
Huang S, Shen Q, Duong TQ. Quantitative prediction of acute ischemic tissue fate using support vector machine[J]. Brain Res, 2011, 1405: 77-84. doi: 10.1016/j.brainres.2011.05.066
|
[13] |
Rondina JM, Filippone M, Girolami M, et al. Decoding post-stroke motor function from structural brain imaging[J]. Neuroimage Clin, 2016, 12: 372-380. doi: 10.1016/j.nicl.2016.07.014
|
[14] |
Forkert ND, Verleger T, Cheng B, et al. Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients[J]. PloS One, 2015, 10: e129569. http://europepmc.org/articles/PMC4476759/pdf/pone.0129569.pdf
|
[15] |
Tjoa E, Guan C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI[J]. IEEE Trans Neural Netw Learn Syst, 2020. doi: 10.1109/TNNLS.2020.3027314.
|
[16] |
Zihni E, Madai VI, Livne M, et al. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome[J]. PLoS One, 2020, 15: e231166. http://www.researchgate.net/publication/340468878_Opening_the_black_box_of_artificial_intelligence_for_clinical_decision_support_A_study_predicting_stroke_outcome
|
[17] |
Bentley P, Ganesalingam J, Carlton Jones AL, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning[J]. Neuroimage Clin, 2014, 4: 635-640. doi: 10.1016/j.nicl.2014.02.003
|
[18] |
Scalzo F, Alger JR, Hu X, et al. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features[J]. Magn Reson Imaging, 2013, 31: 961-969. doi: 10.1016/j.mri.2013.03.013
|
[19] |
Zille M, Karuppagounder SS, Chen Y, et al. Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis[J]. Stroke, 2017, 48: 1033-1043. doi: 10.1161/STROKEAHA.116.015609
|
[20] |
Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, et al. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke[J]. World J Emerg Med, 2017, 8: 34-38. doi: 10.5847/wjem.j.1920-8642.2017.01.006
|
[21] |
Xu J, Zhang R, Zhou Z, et al. Deep Network for the Automatic Segmentation and Quantification of Intracranial Hemorrhage on CT[J]. Front Neurosci, 2021, 14: 541817. doi: 10.3389/fnins.2020.541817
|
[22] |
Zhao X, Chen K, Wu G, et al. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema[J]. Eur Radiol, 2021, 31: 5012-5020. doi: 10.1007/s00330-020-07558-2
|
[23] |
Ironside N, Chen C, Mutasa S, et al. Fully Automated Segmentation Algorithm for Hematoma Volumetric Analysis in Spontaneous Intracerebral Hemorrhage[J]. Stroke, 2019, 50: 3416-3423. doi: 10.1161/STROKEAHA.119.026561
|
[24] |
Cho J, Park K, Karki M, et al. Improving Sensitivity on Identification and Delineation of Intracranial Hemorrhage Lesion Using Cascaded Deep Learning Models[J]. J Digit Imaging, 2019, 32: 450-461. doi: 10.1007/s10278-018-00172-1
|
[25] |
Kuo W, Häne C, Mukherjee P, et al. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning[J]. Proc Natl Acad Sci U S A, 2019, 116: 22737-22745. doi: 10.1073/pnas.1908021116
|
[26] |
Karthik R, Menaka R, Johnson A, et al. Neuroimaging and deep learning for brain stroke detection - A review of recent advancements and future prospects[J]. Comput Methods Programs Biomed, 2020, 197: 105728. doi: 10.1016/j.cmpb.2020.105728
|
[27] |
Yu Y, Guo D, Lou M, et al. Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI[J]. IEEE Trans Biomed Eng, 2018, 65: 2058-2065. doi: 10.1109/TBME.2017.2783241
|
[28] |
Lin CH, Hsu KC, Johnson KR, et al. Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry[J]. Comput Methods Programs Biomed, 2020, 190: 105381. doi: 10.1016/j.cmpb.2020.105381
|
[29] |
Çelik G, Baykan ÖK, Kara Y, et al. Predicting 10-day Mortality in Patients with Strokes Using Neural Networks and Multivariate Statistical Methods[J]. J Stroke Cerebrovasc Dis, 2014, 23: 1506-1512. doi: 10.1016/j.jstrokecerebrovasdis.2013.12.018
|
[30] |
de Jong G, Aquarius R, Sanaan B, et al. Prediction Models in Aneurysmal Subarachnoid Hemorrhage: Forecasting Clinical Outcome With Artificial Intelligence[J]. Neurosurgery, 2021, 88: E427-E434. doi: 10.1093/neuros/nyaa581
|
[31] |
Capoglu S, Savarraj JP, Sheth SA, et al. Representation Learning of 3D Brain Angiograms, an Application for Cerebral Vasospasm Prediction[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 3394-3398. http://www.researchgate.net/publication/336336511_Representation_Learning_of_3D_Brain_Angiograms_an_Application_for_Cerebral_Vasospasm_Prediction
|
[32] |
Ramos LA, van der Steen WE, Sales BR, et al. Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage[J]. J Neurointerv Surg, 2019, 11: 497-502. doi: 10.1136/neurintsurg-2018-014258
|
[33] |
Linder SM, Rosenfeldt AB, Reiss A, et al. The Home Stroke Rehabilitation and Monitoring System Trial: A Randomized Controlled Trial[J]. Inter J Stroke, 2013, 8: 46-53. doi: 10.1111/j.1747-4949.2012.00971.x
|
[34] |
巫嘉陵. 当下有为未来可期: 人工智能与脑血管病[J]. 中国现代神经疾病杂志, 2021, 21: 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJB202101003.htm
|
[35] |
Fu F, Wei J, Zhang M, et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network[J]. Nat Commun, 2020, 11: 4829. doi: 10.1038/s41467-020-18606-2
|
[36] |
Teng L, Ren Q, Zhang P, et al. Artificial Intelligence Can Effectively Predict Early Hematoma Expansion of Intracerebral Hemorrhage Analyzing Noncontrast Computed Tomography Image[J]. Front Aging Neurosci, 2021, 13: 632138. doi: 10.3389/fnagi.2021.632138
|
[37] |
Liu X, Feng J, Wu Z, et al. Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA[J]. Interv Neuroradiol, 2021. doi: 10.1177/15910199211000956.
|
[38] |
Quispe-Orozco D, Farooqui M, Zevallos C, et al. Angiography Suite Cone-Beam Computed Tomography Perfusion Imaging in Large-Vessel Occlusion Patients Using RAPID Software: A Pilot Study[J]. Stroke, 2021. doi: 10.1161/STROKEAHA.121.035992.
|
[39] |
Zhu G, Jiang B, Tong L, et al. Applications of Deep Learning to Neuro-Imaging Techniques[J]. Front Neurol, 2019, 10: 869. doi: 10.3389/fneur.2019.00869
|
[40] |
Zaharchuk G, Gong E, Wintermark M, et al. Deep Learning in Neuroradiology[J]. AJNR Am J Neuroradiol, 2018, 39: 1776-1784. doi: 10.3174/ajnr.A5543
|
[41] |
Pesapane F, Volonté C, Codari M, et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States[J]. Insights Imaging, 2018, 9: 745-753. doi: 10.1007/s13244-018-0645-y
|
[42] |
Tuladhar A, Gill S, Ismail Z, et al. Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling[J]. J Biomed Inform, 2020, 106: 103424. doi: 10.1016/j.jbi.2020.103424
|
[43] |
Kaka H, Zhang E, Khan N. Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New Frontier[J]. Can Assoc Radiol J, 2021, 72: 35-44. doi: 10.1177/0846537120954293
|
[44] |
Boyd C, Brown G, Kleinig T, et al. Machine Learning Quantitation of Cardiovascular and Cerebrovascular Disease: A Systematic Review of Clinical Applications[J]. Diagnostics (Basel), 2021, 11: 551. doi: 10.3390/diagnostics11030551
|