Citation: | LIU Zhaorui, ZHANG Yilan, XIE Fengying, LIU Jie. Early Diagnosis Model of Mycosis Fungoides Based on Intelligent Analysis of Dermoscopic Images[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 689-697. doi: 10.12290/xhyxzz.2021-0496 |
[1] |
刘洁, 邹先彪. 实用皮肤镜学[M]. 北京: 人民卫生出版社, 2021: 1-249.
|
[2] |
Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC)[J]. Blood, 2007, 110: 1713-1722. doi: 10.1182/blood-2007-03-055749
|
[3] |
Krizhevsky A, Sutskever I, Hinton G. ImageNet Classifica-tion with Deep Convolutional Neural Networks[C]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
|
[4] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv, 2014: 1409.1556V6.
|
[5] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Confer-ence on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[6] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[7] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[8] |
Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]. International Confer-ence on Machine Learning, 2019: 6105-6114.
|
[9] |
Hunt RJ. Percent agreement, Pearson's correlation, and kappa as measures of inter-examiner reliability[J]. J Dent Res, 1986, 65: 128-130. doi: 10.1177/00220345860650020701
|
[10] |
Lallas A, Apalla Z, Lefaki I, et al. Dermoscopy of early stage mycosis fungoides[J]. J Eur Acad Dermatol Venereol, 2013, 27: 617-621. doi: 10.1111/j.1468-3083.2012.04499.x
|
[11] |
Ghahramani GK, Goetz KE, Liu V. Dermoscopic characterization of cutaneous lymphomas: a pilot survey[J]. Int J Dermatol, 2018, 57: 339-343. doi: 10.1111/ijd.13860
|
[12] |
Xu C, Liu J, Wang T, et al. Dermoscopic patterns of early-stage mycosis fungoides in a Chinese population[J]. Clin Exp Dermatol, 2019, 44: 169-175. doi: 10.1111/ced.13680
|
[13] |
Bilgic SA, Cicek D, Demir B. Dermoscopy in differential diagnosis of inflammatory dermatoses and mycosis fungoides[J]. Int J Dermatol, 2020, 59: 843-850. doi: 10.1111/ijd.14925
|
[14] |
谢凤英, 刘洁, 崔勇, 等. 皮肤镜图像计算机辅助诊断技术[J]. 中国医学文摘(皮肤科学), 2016, 33: 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW201601011.htm
Xie FY, Liu J, Cui Y, et al. Computer aided diagnosis of dermoscopic images[J]. Zhongguo Yixue Wenzhai(Pifu Kexue), 2016, 33: 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW201601011.htm
|
[15] |
Schindewolf T, Stolz W, Albert R, et al. Classification of melanocytic lesions with color and texture analysis using digital image processing[J]. Anal Quant Cytol Histol, 1993, 1: 1-11. http://europepmc.org/abstract/MED/8471104
|
[16] |
谢斌, 何小宇, 黄伟红, 等. 基于卷积神经网络的基底细胞癌和色素痣的临床图像鉴别[J]. 中南大学学报(医学版), 2019, 44: 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYD201909019.htm
Xie B, He XY, Huang WH, et al. Clinical image identification of basal cell carcinoma and pigmented nevi based on convolutional neural network[J]. Zhongnan Daxue Xuebao (Yixueban), 2019, 44: 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYD201909019.htm
|
[17] |
Serener A, Serte S. Keratinocyte carcinoma detection via convolutional neural networks[C]. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2019: 1-5.
|
[18] |
Pangti R, Mathur J, Chouhan V, et al. A machine learning‐based, decision support, mobile phone application for diagnosis of common dermatological diseases[J]. J Eur Acad Dermatol Venereol, 2021, 35: 536-545. doi: 10.1111/jdv.16967
|