Citation: | LIU Zhaorui, ZHANG Yilan, XIE Fengying, LIU Jie. Early Diagnosis Model of Mycosis Fungoides Based on Intelligent Analysis of Dermoscopic Images[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 689-697. doi: 10.12290/xhyxzz.2021-0496 |
[1] |
刘洁, 邹先彪. 实用皮肤镜学[M]. 北京: 人民卫生出版社, 2021: 1-249.
|
[2] |
Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC)[J]. Blood, 2007, 110: 1713-1722. doi: 10.1182/blood-2007-03-055749
|
[3] |
Krizhevsky A, Sutskever I, Hinton G. ImageNet Classifica-tion with Deep Convolutional Neural Networks[C]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
|
[4] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv, 2014: 1409.1556V6.
|
[5] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Confer-ence on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[6] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[7] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[8] |
Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]. International Confer-ence on Machine Learning, 2019: 6105-6114.
|
[9] |
Hunt RJ. Percent agreement, Pearson's correlation, and kappa as measures of inter-examiner reliability[J]. J Dent Res, 1986, 65: 128-130. doi: 10.1177/00220345860650020701
|
[10] |
Lallas A, Apalla Z, Lefaki I, et al. Dermoscopy of early stage mycosis fungoides[J]. J Eur Acad Dermatol Venereol, 2013, 27: 617-621. doi: 10.1111/j.1468-3083.2012.04499.x
|
[11] |
Ghahramani GK, Goetz KE, Liu V. Dermoscopic characterization of cutaneous lymphomas: a pilot survey[J]. Int J Dermatol, 2018, 57: 339-343. doi: 10.1111/ijd.13860
|
[12] |
Xu C, Liu J, Wang T, et al. Dermoscopic patterns of early-stage mycosis fungoides in a Chinese population[J]. Clin Exp Dermatol, 2019, 44: 169-175. doi: 10.1111/ced.13680
|
[13] |
Bilgic SA, Cicek D, Demir B. Dermoscopy in differential diagnosis of inflammatory dermatoses and mycosis fungoides[J]. Int J Dermatol, 2020, 59: 843-850. doi: 10.1111/ijd.14925
|
[14] |
谢凤英, 刘洁, 崔勇, 等. 皮肤镜图像计算机辅助诊断技术[J]. 中国医学文摘(皮肤科学), 2016, 33: 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW201601011.htm
Xie FY, Liu J, Cui Y, et al. Computer aided diagnosis of dermoscopic images[J]. Zhongguo Yixue Wenzhai(Pifu Kexue), 2016, 33: 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW201601011.htm
|
[15] |
Schindewolf T, Stolz W, Albert R, et al. Classification of melanocytic lesions with color and texture analysis using digital image processing[J]. Anal Quant Cytol Histol, 1993, 1: 1-11. http://europepmc.org/abstract/MED/8471104
|
[16] |
谢斌, 何小宇, 黄伟红, 等. 基于卷积神经网络的基底细胞癌和色素痣的临床图像鉴别[J]. 中南大学学报(医学版), 2019, 44: 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYD201909019.htm
Xie B, He XY, Huang WH, et al. Clinical image identification of basal cell carcinoma and pigmented nevi based on convolutional neural network[J]. Zhongnan Daxue Xuebao (Yixueban), 2019, 44: 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYD201909019.htm
|
[17] |
Serener A, Serte S. Keratinocyte carcinoma detection via convolutional neural networks[C]. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2019: 1-5.
|
[18] |
Pangti R, Mathur J, Chouhan V, et al. A machine learning‐based, decision support, mobile phone application for diagnosis of common dermatological diseases[J]. J Eur Acad Dermatol Venereol, 2021, 35: 536-545. doi: 10.1111/jdv.16967
|
[1] | Liu ZY,Cheng X,Zhang JX,et al.Role and mechanism of Vγ4 T cells in impaired wound healing of rapamycin-induced full-thickness skin defects in mice[J].Chin J Burns Wounds,2022,38(5):462-470.DOI: 10.3760/cma.j.cn501120- 20201209-00523. |
[2] | Liang LT,Song W,Zhang C,et al.Effects of in situ cross-linked graphene oxide-containing gelatin methacrylate anhydride hydrogel on wound vascularization of full-thickness skin defect in mice[J].Chin J Burns Wounds,2022,38(7):616-628.DOI: 10.3760/cma.j.cn501225-20220314-00063.White MJV, Briquez PS, White DAV, et al. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes[J]. NPJ Regen Med, 2021,6(1):76. DOI: 10.1038/s41536-021-00189-1. |
[3] | Wang C,Chen W,Wang BJ.Regulatory effects and signaling mechanism of sodium ferulate on the proliferation and apoptosis of human skin hypertrophic scar fibroblasts[J].Chin J Burns Wounds,2022,38(5):471-480.DOI: 10.3760/cma.j.cn501120-20201120-00484. |
[4] | Shi ZY,Zhang BH,Sun JH,et al.Research advances on the role and mechanism of epidermal stem cells in skin wound repair[J].Chin J Burns Wounds,2022,38(9):854-858.DOI: 10.3760/cma.j.cn501120-20211109-00382. |
[5] | L. Zhu, X. Sun, Y. Liu, and W. Zhang,One neural network approach for the surrogate turbulence model in transonic flows. Acta Mech. Sin., 2022, 38, |
[6] | Sun LX,Wu S,Zhang XW,et al.Investigation on the growth factor regulatory network of dermal fibroblasts in mouse full-thickness skin defect wounds based on single-cell RNA sequencing[J].Chin J Burns Wounds,2022,38(7):629-639.DOI: 10.3760/cma.j.cn501225-20220215-00029.Moreau JM, Dhariwala MO, Gouirand V, et al. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation[J]. Sci Immunol,2021,6(62):eabg2329. DOI: 10.1126/sciimmunol.abg2329. |
[7] | YANG Wei, HUANG Lihong, QU Xiaolei. Dual Attention Network for the Classification of Road Surface Conditions Based on EfficientNet[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 211-222. doi: 10.3901/JME.2022.24.211 |
[8] | WU Jun, FEI Sijia, SHEN Bo, ZHANG Hanwen, HUANG Jianfeng, PAN Qi, ZHAO Jianchun, DING Dayong. Artificial Intelligence Analysis of Nerve Fibers Based on Corneal Confocal Microscopy[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 736-741. doi: 10.12290/xhyxzz.2021-0510 |
[9] | Cao Zhi, Shang Lidan, Yin Dong. A weakly supervised learning method for vehicle identification code detection and recognition[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200170. doi: 10.12086/oee.2021.200170 |
[10] | Cao Zhi, Shang Lidan, Yin Dong. A weakly supervised learning method for vehicle identification code detection and recognition[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200270. doi: 10.12086/oee.2021.200270 |
[11] | Li Xun, Li Linpeng, Alexander Lazovik, Wang Wenjie, Wang Xiaohua. RGB-D object recognition algorithm based on improved double stream convolution recursive neural network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200069. doi: 10.12086/oee.2021.200069 |
[12] | Dermatology Branch of China International Exchange and Promoting Association for Medical and Health Care, Huaxia Skin Image and Artificial Intelligence Cooperation, China International Exchange and Promotive Association for Medical and Health Care, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College. Correlation Between the Dermoscopic Features and the Histopathological Features of Common Erythematosquamous Skin Diseases: the Consensus Statement of Chinese Experts (2021)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 666-673. doi: 10.12290/xhyxzz.2021-0520 |
[13] | Zhihong ZHENG, Chaohua ZHANG, Haisheng LIN, Shaokui ZENG, Xiaoming QIN, Wenhong CAO, Haiyuan CHEN. Wound-healing acceleration of mice skin by Sipunculus nudus extract and its mechanism[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 460-468, 479. doi: 10.7507/1001-5515.201908008 |
[14] | Zhong Guorong,Li Xuegang,Qu Baoxiao, et al. A general regression neural network approach to reconstruct global 1°×1° resolution sea surface pCO2[J]. Haiyang Xuebao,2020, 42(10):70–79. doi: 10.3969/j.issn.0253-4193.2020.10.007. |
[16] | Yuchao WU, Lan LIN, Jingxuan WANG, Shuicai WU. Application of semantic segmentation based on convolutional neural network in medical images[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 533-540. doi: 10.7507/1001-5515.201906067 |
[17] | WANG Zongjie, XING Mingfeng, WANG Hongbo. Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 8-12. doi: 10.11936/bjutxb2016040071 |
[18] | LI Wei, QIAO Junfei. Structure Design of Fuzzy Neural Networks Based on Recursive Clustering and Similarity[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 210-216. doi: 10.11936/bjutxb2016040086 |
[19] | JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093 |
[20] | LI Yujian, SHEN Chengkai, YANG Hongli, HU Haihe. PCA Shuffling Initialization of Convolutional Neural Networks[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 22-27. doi: 10.11936/bjutxb2016060070 |