Citation: | ZHANG Gumuyang, XU Lili, MAO Li, LI Xiuli, JIN Zhengyu, SUN Hao. CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 698-704. doi: 10.12290/xhyxzz.2021-0511 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. doi: 10.3322/caac.21492
|
[2] |
Pang C, Guan Y, Li H, et al. Urologic cancer in China[J]. JPN J Clin Oncol, 2016, 46: 497-501. doi: 10.1093/jjco/hyw034
|
[3] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48: 441-446. doi: 10.1016/j.ejca.2011.11.036
|
[4] |
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magnetic Resonance Imaging, 2012, 30: 1234-1248. doi: 10.1016/j.mri.2012.06.010
|
[5] |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantita-tive radiomics approach[J]. Nat Commun, 2014, 5: 4006. doi: 10.1038/ncomms5006
|
[6] |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278: 563-577. doi: 10.1148/radiol.2015151169
|
[7] |
Spiess PE, Agarwal N, Bangs R, et al. Bladder Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2017, 15: 1240-1267. doi: 10.6004/jnccn.2017.0156
|
[8] |
Kluth LA, Black PC, Bochner BH, et al. Prognostic and Prediction Tools in Bladder Cancer: A Comprehensive Review of the Literature[J]. Eur Urol, 2015, 68: 238-253. doi: 10.1016/j.eururo.2015.01.032
|
[9] |
Fernandez-Gomez J, Madero R, Solsona E, et al. Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model[J]. J Urol, 2009, 182: 2195-2203. doi: 10.1016/j.juro.2009.07.016
|
[10] |
Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials[J]. Eur Urol, 2006, 49: 466-475. doi: 10.1016/j.eururo.2005.12.031
|
[11] |
Oderda M, Ricceri F, Pisano F, et al. Prognostic factors including Ki-67 and p53 in Bacillus Calmette-Guerin-treated non-muscle-invasive bladder cancer: a prospective study[J]. Urol Int, 2013, 90: 184-190. doi: 10.1159/000343431
|
[12] |
van Kessel KEM, van der Keur KA, Dyrskjøt L, et al. Molecular Markers Increase Precision of the European Associa-tion of Urology Non-Muscle-Invasive Bladder Cancer Progression Risk Groups[J]. Clin Cancer Res, 2018, 24: 1586-1593. doi: 10.1158/1078-0432.CCR-17-2719
|
[13] |
Tilki D, Burger M, Dalbagni G, et al. Urine markers for detection and surveillance of non-muscle-invasive bladder cancer[J]. Euro Urol, 2011, 60: 484-492. doi: 10.1016/j.eururo.2011.05.053
|
[14] |
Ueno Y, Takeuchi M, Tamada T, et al. Diagnostic Accuracy and Interobserver Agreement for the Vesical Imaging-Reporting and Data System for Muscle-invasive Bladder Cancer: A Multireader Validation Study[J]. Eur Urol, 2019, 76: 54-56. doi: 10.1016/j.eururo.2019.03.012
|
[15] |
Wu S, Zheng J, Li Y, et al. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer[J]. Clin Cancer Res, 2017, 23: 6904-6911. doi: 10.1158/1078-0432.CCR-17-1510
|
[16] |
Zhang G, Xu L, Zhao L, et al. CT-based radiomics to predict the pathological grade of bladder cancer[J]. Eur Radiol, 2020, 30: 6749-6756. doi: 10.1007/s00330-020-06893-8
|
[17] |
Zhang G, Sun H, Shi B, et al. Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma[J]. Abdom Radiol (NY), 2017, 42: 561-568. doi: 10.1007/s00261-016-0897-2
|
[18] |
Garapati SS, Hadjiiski L, Cha KH, et al. Urinary bladder cancer staging in CT urography using machine learning[J]. Med Phys, 2017, 44: 5814-5823. doi: 10.1002/mp.12510
|