Citation: | LI Yang, WANG Liuping, HUANG Jin, FAN Xiangmin, TIAN Feng. Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522 |
[1] |
Card SK, Moran TP, Newell A. The Psychology of Human-Computer Interaction[J]. Am J Psychol, 1983. doi: 10.2307/1422176.
|
[2] |
Grammatikopoulou A, Grammalidis N, Bostantjopoulou S, et al. Detecting hypomimia symptoms by selfie photo analysis: for early Parkinson disease detection[C]. Pervasive Technologies Related to Assistive Environments, 2019: 517-522.
|
[3] |
Gordon ML, Gatys LA, Guestrin C, et al. App Usage Predicts Cognitive Ability in Older Adults[C]. Human Factors in Computing Systems, 2019, 168: 1-12.
|
[4] |
Aoe J, Fukuma R, Yanagisawa T, et al. Automatic diagnosis of neurological diseases using MEG signals with a deep neural network[J]. Sci Rep, 2019, 9: 5057. doi: 10.1038/s41598-019-41500-x
|
[5] |
Chiuchisan I, Chiuchisan I, Geman O, et al. Tremor Measurement System for Neurological Disorders Screening[J]. Springer Cham, 2016, 633: 339-348. http://www.eed.usv.ro/idei_48/articles/SOFA_2016_paper2.pdf
|
[6] |
Impedovo D, Pirlo G, Vessio G, et al. A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia[J]. Cogn Comput, 2019, 11: 576-586. doi: 10.1007/s12559-019-09642-2
|
[7] |
Smits EJ, Tolonen A, Cluitmans L, et al. Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson's disease[J]. PLoS One, 2014, 9: e97614. doi: 10.1371/journal.pone.0097614
|
[8] |
Fellows RP, Dahmen J, Cook D, et al. Multicomponent analysis of a digital Trail Making Test[J]. Clin Neuropsychol, 2017, 31: 154-167. doi: 10.1080/13854046.2016.1238510
|
[9] |
Harbi, Zainab. Automatic interpretation of clock drawings for computerised assessment of dementia[D]. Wales: Cardiff University, 2017.
|
[10] |
Drotár P, Mekyska J, Rektorová I, et al. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease[J]. Artif Intell Med, 2016, 67: 39-46. doi: 10.1016/j.artmed.2016.01.004
|
[11] |
Dahmen J, Cook D, Fellows R, et al. An analysis of a digital variant of the Trail Making Test using machine learning techniques[J]. Technol Health Care, 2017, 25: 251-264. doi: 10.3233/thc-161274
|
[12] |
Souillard-Mandar W, Davis R, Rudin C, et al. Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test[J]. Mach Learn, 2016, 102: 393-441. doi: 10.1007/s10994-015-5529-5
|
[13] |
Hirano M. Psycho-Acoustic Evaluation of Voice[J]. Clin Exam Voice, 1981. http://ci.nii.ac.jp/naid/10011685687
|
[14] |
Baken RJ, Orlikoff RF. Clinical Measurement of Speech and Voice[M]. San Diego: Singular Thomson Learning, 2000.
|
[15] |
Mekyska J, Janousova E, Gomez-Vilda P, et al. Robust and complex approach of pathological speech signal analysis[J]. Neurocomputing, 2015, 167: 94-111. doi: 10.1016/j.neucom.2015.02.085
|
[16] |
Laaridh I, Kheder WB, Fredouille C, et al. Automatic Prediction of Speech Evaluation Metrics for Dysarthric Speech[C]. Interspeech, 2017: 1363-1366.
|
[17] |
Kodrasi I, Bourlard H. Super-gaussianity of Speech Spectral Coefficients as a Potential Biomarker for Dysarthric Speech Detection[C]. ICASSP, 2019: 6400-6404.
|
[18] |
Weiner J, Herff C, Schultz T. Speech-Based Detection of Alzheimer's Disease in Conversational German[C]. Interspeech, 2016: 1938-1942.
|
[19] |
Tsanas A, Little MA, Mcsharry PE, et al. Novel Speech Signal Processing Algorithms for High-Accuracy Classifica-tion of Parkinson's Disease[J]. IEEE Trans Biomed Eng, 2012, 59: 1264-1271. doi: 10.1109/TBME.2012.2183367
|
[20] |
Benba A, Jilbab A, Hammouch A. Voice assessments for detecting patients with neurological diseases using PCA and NPCA[J]. Inter J Speech Technol, 2017, 20: 673-683. doi: 10.1007/s10772-017-9438-9
|
[21] |
Berus L, Klancnik S, Brezocnik M, et al. Classifying Parkinson's Disease Based on Acoustic Measures Using Artificial Neural Networks[J]. Sensors (Basel), 2018, 19: 16. doi: 10.3390/s19010016
|
[22] |
Prakash C, Kumar R, Mittal N. Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges[J]. Art Int Rev, 2016, 49: 1-40. doi: 10.1007/s10462-016-9514-6
|
[23] |
Martelli D, Aprigliano F, Agrawal SK. Gait Adjustments Against Multidirectional Waist-Pulls in Cerebellar Ataxia and Parkinson's Disease[J]. Bio Sys Rob, 2019, 21: 283-286.
|
[24] |
吴壮, 仲敏, 蒋旭, 等. 不同临床分期帕金森病患者的步态分析[J]. 临床神经病学杂志, 2021, 34: 169-172. doi: 10.3969/j.issn.1004-1648.2021.03.003
Wu Z, Zhong M, Jiang X, et al. Gait analysis of patients with different stages Parkinson's disease[J]. Linchuang Shenjingbingxue Zazhi, 2021, 34: 169-172 doi: 10.3969/j.issn.1004-1648.2021.03.003
|
[25] |
Pavone L, Pasqua G, Ricciuti P, et al. A Kinect-Based Portable Automatic Gait Analysis System-An Experimental Validation[J]. Biom J Sci Tech Res, 2019, 17: 12552-12555. http://www.researchgate.net/publication/335541156_A_Kinect-Based_Portable_Automatic_Gait_Analysis_System_An_Experimental_Validation
|
[26] |
Yoneyama M, Kurihara Y, Watanabe K, et al. Accelerometry-based gait analysis and its application to Parkinson's disease assessment- part 2: a new measure for quantifying walking behavior[J]. IEEE Trans Neural Syst Rehabil Eng, 2013, 21: 999-1005. doi: 10.1109/TNSRE.2013.2268251
|
[27] |
Latorre J, Llorens R, Colomer C, et al. Reliability and comparison of Kinect-based methods for estimating spatiotem-poral gait parameters of healthy and post-stroke individuals[J]. J Biomech, 2018, 72: 268-273. doi: 10.1016/j.jbiomech.2018.03.008
|
[28] |
Ma Y, Mithraratne K, Wilson N, et al. The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy[J]. Sensors (Basel), 2019, 19: 1660-1676. doi: 10.3390/s19071660
|
[29] |
Chakraborty S, Nandy A. Automatic Diagnosis of Cerebral Palsy Gait Using Computational Intelligence Techniques: A Low-Cost Multi-Sensor Approach[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28: 2488-2496. . doi: 10.1109/TNSRE.2020.3028203
|
[30] |
Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke[J]. J Clin Neurophysiol, 2004, 21: 341-352. http://europepmc.org/abstract/MED/15592008
|
[31] |
Faust O, Acharya UR, Adeli H, et al. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis[J]. Inter J Eng Res Appl, 2015, 26: 56-64.
|
[32] |
Ahmadi A, Davoudi S, Daliri MR. Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention[J]. Comput Methods Programs Biomed, 2019, 169: 9-18. doi: 10.1016/j.cmpb.2018.11.006
|
[33] |
Zwarts MJ, Drost G, Stegeman DF. Recent progress in the diagnostic use of surface EMG for neurological diseases[J]. J Electromyogr Kinesiol, 2000, 10: 287-291. doi: 10.1016/S1050-6411(00)00020-1
|
[34] |
Robichaud JA, Pfann KD, Leurgans S, et al. Variability of EMG patterns: a potential neurophysiological marker of Parkinson's disease?[J]. Clin Neurophysiol, 2009, 120: 390-397. doi: 10.1016/j.clinph.2008.10.015
|
[35] |
Das T, Ghosh A, Guha S, et al. Classification of EEG Signals for Prediction of Seizure using Multi-Feature Extraction[C]. International Conference on Electronics, 2017: 1-4.
|
[36] |
李洋, 黄进, 田丰, 等. 云端融合的神经系统疾病多通道辅助诊断研究[J]. 中国科学(信息科学), 2017, 47: 1164-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201709004.htm
Li Y, Huang J, Tian F, et al. Research on the multi-modal aided neurological disease diagnosis with synergy of cloud and client[J]. Zhongguo Kexue(Xinxi Kexue), 2017, 47: 1164-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201709004.htm
|
[37] |
Hsu C, Liu Y, Zachary K, et al. Extracting Gait Velocity and Stride Length from Surrounding Radio Signals[C]. CHI Conference on Human Factors in Computing Systems, 2017: 2116-2126.
|
[38] |
Cirillo D, Catuara-Solarz S, Morey C, et al. Sex and gender differences and biases in artificial intelligence for biomedi-cine and healthcare[J]. NPJ Digit Med, 2020, 3: 81. doi: 10.1038/s41746-020-0288-5
|