Citation: | YU Weihong, ZHANG Xiao, WU Chan, CHEN Huan, YANG Zhikun, HE Feng, ZHANG Zhiqiao, ZHANG Bilei, GONG Di, WANG Yuelin, YANG Jingyuan, LI Bing, SUN Yanyuan, MA Yajing, LU Huiqin, XIA Wei, ZHOU Wei, ZHANG Donglei, PAN Qingmin, YANG Ning, WANG Shuna, SUN Xiaolei, YU Ying, SU Chang, WAN Bo, WANG Mingqi, WANG Min, CHEN Youxin. Procedures of Establishing a Well-annotated Database of Color Fundus Photography of Diabetic Retinopathy for Artificial Intelligence Research[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 684-688. doi: 10.12290/xhyxzz.2021-0613 |
[1] |
王亚星, 薛灿灿, 李建军. 眼科人工智能研究存在的主要问题及对策[J]. 眼科, 2021, 30: 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YAKE202102004.htm
|
[2] |
U.S. Food and Drug Administration. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems[EB/OL]. (2018-04-11)[2021-08-21]. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye.
|
[3] |
Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[J]. JAMA, 2016, 316: 2402-2410. doi: 10.1001/jama.2016.17216
|
[4] |
中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志, 2014, 50: 851-865. doi: 10.3760/cma.j.issn.0412-4081.2014.11.014
|
[5] |
Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension[J]. Nat Med, 2020, 26: 1351-1363. doi: 10.1038/s41591-020-1037-7
|