Citation: | Chinese Society of Surgery, Chinese Society of Anesthesiology. Clinical Practice Guidelines for ERAS in China(2021)(Ⅳ)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 650-657. doi: 10.12290/xhyxzz.20210004 |
[1] |
Holderbaum M, Casagrande DS, Sussenbach S, et al. Effects of very low calorie diets on liver size and weight loss in the preoperative period of bariatric surgery: a systematic review[J]. Surg Obe Relat Dis, 2018, 14: 237-244. doi: 10.1016/j.soard.2017.09.531
|
[2] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13: 315-409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ202106003.htm
|
[3] |
American Diabetes Association. 15. Diabetes care in the hospital: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020, 43: S193-S202. doi: 10.2337/dc20-S015
|
[4] |
Busetto L, Dicker D, Azran C, et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management[J]. Obes Facts, 2017, 10: 597-632. doi: 10.1159/000481825
|
[5] |
Weimann A, Braga M, Carli F, et al. ESPEN guideline: clinical nutrition in surgery[J]. Clin Nutr, 2017, 36: 623-650. doi: 10.1016/j.clnu.2017.02.013
|
[6] |
Abdelhamid BM, Khaled D, Mansour MA, et al. Compar-ison between the ultrasound-guided erector spinae block and the subcostal approach to the transversus abdominis plane block in obese patients undergoing sleeve gastrectomy: a randomized controlled trial[J]. Minerva Anestesiol, 2020, 86: 816-826.
|
[7] |
Ruiz-Tovar J, Gonzalez G, Sarmiento A, et al. Analgesic effect of postoperative laparoscopic-guided transversus abdominis plane (TAP) block, associated with preoperative port-site infiltration, within an enhanced recovery after surgery protocol in one-anastomosis gastric bypass: a randomized clinical trial[J]. Surg Endosc, 2020, 34: 5455-5460. doi: 10.1007/s00464-019-07341-5
|
[8] |
Sultan P, Patel SD, Jadin S, et al. Transversus abdominis plane block compared with wound infiltration for postopera-tive analgesia following cesarean delivery: a systematic review and network meta-analysis[J]. Can J Anaesth, 2020, 67: 1710-1727. doi: 10.1007/s12630-020-01818-x
|
[9] |
Ma P, Lloyd A, McGrath M, et al. Reduction of opioid use after implementation of enhanced recovery after bariatric surgery (ERABS)[J]. Surg Endosc, 2020, 34: 2184-2190. doi: 10.1007/s00464-019-07006-3
|
[10] |
Kim HJ, Lee KY, Kim MH, et al. Effects of deep vs moderate neuromuscular block on the quality of recovery after robotic gastrectomy[J]. Acta Anaesthesiol Scand, 2019, 63: 306-313. doi: 10.1111/aas.13271
|
[11] |
Boggett S, Chahal R, Griffiths J, et al. A randomised controlled trial comparing deep neuromuscular blockade reversed with sugammadex with moderate neuromuscular block reversed with neostigmine[J]. Anaesthesia, 2020, 75: 1153-1163. doi: 10.1111/anae.15094
|
[12] |
Thilen SR, Ng IC, Cain KC, et al. Management of rocuronium neuromuscular block using a protocol for qualitative monitoring and reversal with neostigmine[J]. Br J Anaesth, 2018, 121: 367-377. doi: 10.1016/j.bja.2018.03.029
|
[13] |
Renew JR, Ratzlaff R, Hernandez-Torres V, et al. Neuromuscular blockade management in the critically ill patient[J]. J Intensive Care, 2020, 8: 37. doi: 10.1186/s40560-020-00455-2
|
[14] |
Ma P, Lloyd A, McGrath M, et al. Efficacy of liposomal bupivacaine versus bupivacaine in port site injections on postoperative pain within enhanced recovery after bariatric surgery program: a randomized clinical trial[J]. Surg Obes Relat Dis, 2019, 15: 1554-1562. doi: 10.1016/j.soard.2019.06.004
|
[15] |
Major P, Wysocki M, Torbicz G, et al. Risk factors for prolonged length of hospital stay and readmissions after laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass[J]. Obes Surg, 2018, 28: 323-332. doi: 10.1007/s11695-017-2844-x
|
[16] |
Bree K, Mitko J, Hussain L, et al. The impact of an enhanced recovery protocol for patients undergoing laparoscopic revisional bariatric surgery[J]. Obes Surg, 2020, 30: 2844-2846. doi: 10.1007/s11695-020-04493-5
|
[17] |
Nagliati C, Troian M, Pennisi D, et al. Enhanced recovery after bariatric surgery: 202 consecutive patients in an Italian Bariatric Center[J]. Obes Surg, 2019, 29: 3133-3141. doi: 10.1007/s11695-019-03962-w
|
[18] |
Parisi A, Desiderio J, Cirocchi R, et al. Enhanced Recovery after Surgery (ERAS): a systematic review of randomised controlled trials (RCTs) in bariatric surgery[J]. Obes Surg, 2020, 30: 5071-5085. doi: 10.1007/s11695-020-05000-6
|
[19] |
Van Dessel E, Moons J, Nafteux P, et al. Perioperative fluid management in esophagectomy for cancer and its relation to postoperative respiratory complications[J]. Dis Esophagus, 2021, 34: doaa111. doi: 10.1093/dote/doaa111
|
[20] |
Zhu AC, Agarwala A, Bao X. Perioperative fluid manage-ment in the Enhanced Recovery after Surgery (ERAS) pathway[J]. Clin Colon Rectal Surg, 2019, 32: 114-120. doi: 10.1055/s-0038-1676476
|
[21] |
Heming N, Moine P, Coscas R, et al. Perioperative fluid management for major elective surgery[J]. Br J Surg, 2020, 107: e56-e62. doi: 10.1002/bjs.11457
|
[22] |
Joosten A, Coeckelenbergh S, Alexander B, et al. Hydroxyethyl starch for perioperative goal-directed fluid therapy in 2020: a narrative review[J]. BMC Anesthesiol, 2020, 20: 209. doi: 10.1186/s12871-020-01128-1
|
[23] |
Grasso M, Pacella G, Sangiuliano N, et al. Gastric cancer surgery: clinical outcomes and prognosis are influenced by perioperative blood transfusions[J]. Updates Surg, 2019, 71: 439-443. doi: 10.1007/s13304-019-00622-7
|
[24] |
Roshanov PS, Guyatt GH, Tandon V, et al. Preoperative prediction of Bleeding Independently associated with Mortality after noncardiac Surgery (BIMS): an international prospective cohort study[J]. Br J Anaesth, 2021, 126: 172-180. doi: 10.1016/j.bja.2020.02.028
|
[25] |
Turan A, Rivas E, Devereaux PJ, et al. Association between postoperative haemoglobin concentrations and composite of non-fatal myocardial infarction and all-cause mortality in noncardiac surgical patients: post hoc analysis of the POISE-2 trial[J]. Br J Anaesth, 2021, 126: 87-93. doi: 10.1016/j.bja.2020.08.054
|
[26] |
Muñoz M, Acheson AG, Auerbach M, et al. International consensus statement on the peri-operative management of anaemia and iron deficiency[J]. Anaesthesia, 2017, 72: 233-247. doi: 10.1111/anae.13773
|
[27] |
Hiki N, Katai H, Mizusawa J, et al. Long-term outcomes of laparoscopy-assisted distal gastrectomy with suprapancreatic nodal dissection for clinical stage Ⅰ gastric cancer: a multicenter phase Ⅱ trial (JCOG0703)[J]. Gastric Cancer, 2018, 21: 155-161. doi: 10.1007/s10120-016-0687-0
|
[28] |
Katai H, Mizusawa J, Katayama H, et al. Short-term surgical outcomes from a phase Ⅲ study of laparoscopy-assisted versus open distal gastrectomy with nodal dissection for clinical stage ⅠA/IB gastric cancer: Japan Clinical Oncology Group Study JCOG0912[J]. Gastric Cancer, 2017, 20: 699-708. doi: 10.1007/s10120-016-0646-9
|
[29] |
Kim HH, Han SU, Kim MC, et al. Effect of laparoscopic distal gastrectomy vs open distal gastrectomy on long-term survival among patients with stage Ⅰ gastric cancer: the KLASS-01 randomized clinical trial[J]. JAMA Oncol, 2019, 5: 506-513. doi: 10.1001/jamaoncol.2018.6727
|
[30] |
Yu J, Huang C, Sun Y, et al. Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial[J]. JAMA, 2019, 321: 1983-1992. doi: 10.1001/jama.2019.5359
|
[31] |
Hyung WJ, Yang HK, Han SU, et al. A feasibility study of laparoscopic total gastrectomy for clinical stage Ⅰ gastric cancer: a prospective multi-center phase Ⅱ clinical trial, KLASS 03[J]. Gastric Cancer, 2019, 22: 214-222. doi: 10.1007/s10120-018-0864-4
|
[32] |
Liu F, Huang C, Xu Z, et al. Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage Ⅰ gastric cancer: the CLASS02 multicenter randomized clinical trial[J]. JAMA Oncol, 2020, 6: 1590-1597. doi: 10.1001/jamaoncol.2020.3152
|
[33] |
He M, Jiang Z, Wang C, et al. Diagnostic value of near-infrared or fluorescent indocyanine green guided sentinel lymph node mapping in gastric cancer: a systematic review and meta-analysis[J]. J Surg Oncol, 2018, 118: 1243-1256. doi: 10.1002/jso.25285
|
[34] |
Shida A, Mitsumori N, Fujioka S, et al. Sentinel node navigation surgery for early gastric cancer: analysis of factors which affect direction of lymphatic drainage[J]. World J Surg, 2018, 42: 766-772. doi: 10.1007/s00268-017-4226-x
|
[35] |
Chen QY, Xie JW, Zhong Q, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial[J]. JAMA Surg, 2020, 155: 300-311. doi: 10.1001/jamasurg.2019.6033
|
[36] |
Guerrini GP, Esposito G, Magistri P, et al. Robotic versus laparoscopic gastrectomy for gastric cancer: the largest meta-analysis[J]. Int J Surg, 2020, 82: 210-228. doi: 10.1016/j.ijsu.2020.07.053
|
[37] |
Liao G, Zhao Z, Khan M, et al. Comparative analysis of robotic gastrectomy and laparoscopic gastrectomy for gastric cancer in terms of their long-term oncological outcomes: a meta-analysis of 3410 gastric cancer patients[J]. World J Surg Oncol, 2019, 17: 86. doi: 10.1186/s12957-019-1628-2
|
[38] |
Shin HJ, Son SY, Wang B, et al. Long-term comparison of robotic and laparoscopic gastrectomy for gastric cancer: a propensity score-weighted analysis of 2084 consecutive patients[J]. Ann Surg, 2021, 274: 128-137. doi: 10.1097/SLA.0000000000003845
|
[39] |
杨珵璨王, 火海钟, 沈佳慧, 等. 减重代谢外科围手术期阻塞性睡眠呼吸暂停诊治指南导读和认识[J]. 中华肥胖与代谢病电子杂志, 2018, 4: 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-FPDX201802002.htm
|
[40] |
Sun HB, Li Y, Liu XB, et al. Impact of an early oral feeding protocol on inflammatory cytokine changes after esophagectomy[J]. Ann Thorac Surg, 2019, 107: 912-920. doi: 10.1016/j.athoracsur.2018.09.048
|
[41] |
Tweed T, van Eijden Y, Tegels J, et al. Safety and efficacy of early oral feeding for enhanced recovery following gastrectomy for gastric cancer: a systematic review[J]. Surg Oncol, 2019, 28: 88-95. doi: 10.1016/j.suronc.2018.11.017
|
[42] |
Bevilacqua LA, Obeid NR, Spaniolas K, et al. Early postoperative diet after bariatric surgery: impact on length of stay and 30-day events[J]. Surg Endosc, 2019, 33: 2475-2478. doi: 10.1007/s00464-018-6533-1
|
[43] |
Jung YJ, Seo HS, Park CH, et al. Venous thromboembolism incidence and prophylaxis use after gastrectomy among Korean patients with gastric adenocarcinoma: the PROTECTOR randomized clinical trial[J]. JAMA Surg, 2018, 153: 939-946. doi: 10.1001/jamasurg.2018.2081
|
[44] |
Jeong O, Kim HG. Implementation of Enhanced Recovery after Surgery (ERAS) program in perioperative management of gastric cancer surgery: a nationwide survey in Korea[J]. J Gastric Cancer, 2019, 19: 72-82. doi: 10.5230/jgc.2019.19.e3
|
[45] |
Wang Z, Chen J, Su K, et al. Abdominal drainage versus no drainage post-gastrectomy for gastric cancer[J]. Cochrane Database Syst Rev, 2015, 2015: CD008788.
|