Turn off MathJax
Article Contents
HE Xu, JIANG Zhenghui, SANG Zheng, LIU Zechang, FENG Guangyuan, YANG Qin, JIANG Houshi. Laminar Combustion Characteristics of Jet-A surrogate Fuel /Ethanol[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.123456/j.rhnk.0000-00
Citation: HE Xu, JIANG Zhenghui, SANG Zheng, LIU Zechang, FENG Guangyuan, YANG Qin, JIANG Houshi. Laminar Combustion Characteristics of Jet-A surrogate Fuel /Ethanol[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.123456/j.rhnk.0000-00

Laminar Combustion Characteristics of Jet-A surrogate Fuel /Ethanol

doi: 10.123456/j.rhnk.0000-00
  • Received Date: 24 Oct 2022
    Available Online: 10 Jul 2023
  • To study the effect of ethanol blending on the combustion characteristics of aviation kerosene laminar flame at an initial temperature of 470K and an initial pressure of 0.1MPa, a constant volume incendiary bomb was used in this paper to conduct a comparative analysis combined with simulation. The results show that the addition of ethanol significantly improves the laminar burning velocity of aviation kerosene, but there is a large deviation between the simulation results and the experimental data, especially at low equivalence ratios, and the mechanism needs to be further optimized. On this basis, a sensitivity analysis was carried out, finding a great influence of four elementary reactions on the laminar burning speed. Adjusting the parameters of the four elementary reactions, a new model was obtained, being in good agreement with the experimental values.

     

  • loading
  • [1]
    肖献法. 国务院《2030年前碳达峰行动方案》给交通运输、汽车等行业定调[J]. 商用汽车, 2021(11): 16-22.

    XIAO Xianfa. The state council's action plan for carbon dioxide peak before 2030 sets the tone for transportation, automobile and other industries[J]. Commercial Vehicle, 2021(11): 16-22. (in Chinese)
    [2]
    赵琳, 刘文峰, 李斌, 等. 政策导向下的新能源公交车节能减排效果评估[J]. 北京理工大学学报, 2016, 36(增刊2): 99-102.

    ZHAO Lin, LIU Wenfeng, LI Bin, et al. Evaluation on energy-saving and emission-reduction results of new energy buses based on policy guidance[J]. Transactions of Beijing institute of Technology, 2016, 36(S2): 99-102. (in Chinese)
    [3]
    何旭, 张志鹏, 吴昊, 等. 基于二维激光诱导炽光法的棉籽油扩散火焰碳烟生成特性[J]. 北京理工大学学报, 2019, 39(3): 235-240, 326.

    HE Xu, ZHANG Zhipeng, WU Hao, et al. Investigation on the soot formation of cottonseed oil diffusion flame by two-dimensional laser induced incandescence[J]. Transactions of Beijing institute of Technology, 2019, 39(3): 235-240, 326. (in Chinese)
    [4]
    FOONG T M, MORGANTI K J, BREAR M J, et al. The effect of charge cooling on the ron of ethanol/gasoline blends [J]. Sae International Journal of Fuels & Lubricants, 2013, 6(1): 34-43.
    [5]
    YANG Q, LIU Z, HOU X, et al. Measurements of laminar flame speeds and flame instability analysis of E30-air premixed flames at elevated temperatures and pressures [J]. Fuel, 2020, 259: 116223.
    [6]
    范学军, 俞刚. 大庆RP-3航空煤油热物性分析 [J]. 推进技术, 2006, 27(2): 187-192.

    FANG Xuejun , YU Gang. Analysis of the mophysical properties of Daqing RP-3 aviation kerosene [J]. Journal of Propulsion TechnologY, 2006, 27(2): 187-192. (in Chinese)
    [7]
    肖保国, 杨顺华, 赵慧勇, 等. RP-3航空煤油燃烧的详细和简化化学动力学模型 [J]. 航空动力学报, 2010, 25(9): 1948-1955.

    XIAO Baoguo, YANG Shunhua, ZHAO Huiyong, et al. Detailed and reduced chemical kinetic mechanisms for RP-3aviation kerosene combustion [J]. Journal of Aeronautical Dynamics, 2010, 25(9): 1948-1955. (in Chinese)
    [8]
    ZHANG R L, JIN J, LE J L. The simulation of endothermic fuel flow in cooling channels of Scramjet [J].
    [9]
    曾文, 刘靖, 张治博, 等. 一种新的RP-3航空煤油模拟替代燃料 [J]. 航空动力学报, 2017, 32(10): 2314-2320.

    ZENG Weng, LIU Jing, ZHANG Zhibo, et al. A new surrogate fuel of RP-3 kerosene [J]. Journal of Aeronautical Dynamics, 2017, 32(10): 2314-2320. (in Chinese)
    [10]
    曾文, 陈欣, 马洪安, 等. RP-3航空煤油层流燃烧特性的实验 [J]. 航空动力学报, 2015, 30(12): 2888-2896.

    ZENG Weng, CHEN Xin, MA Hongan, et al. Experiment on laminar combustion characteristics of RP-3 kerosene [J]. Journal of Aeronautical Dynamics, 2015, 30(12): 2888-2896. (in Chinese)
    [11]
    MA H, XIE M, ZENG W, et al. Experimental study on combustion characteristics of Chinese RP-3 kerosene [J]. Chinese Journal of Aeronautics, 2016, 29(2): 375-385.
    [12]
    LIU J, HU E, ZENG W, et al. A new surrogate fuel for emulating the physical and chemical properties of RP-3 kerosene [J]. Fuel, 2020: 259: 116210.
    [13]
    DAGAUT P. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel [J]. Physical Chemistry Chemical Physics, 2002, 4(11): 2079-2094.
    [14]
    DAGAUT P, EL BAKALI A, RISTORI A. The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels [J]. Fuel, 2006, 85(7-8): 944-956.
    [15]
    DOOLEY S, WON S H, CHAOS M, et al. A jet fuel surrogate formulated by real fuel properties [J]. Combustion and Flame, 2010, 157(12): 2333-2339.
    [16]
    DOOLEY S, WON S H, HEYNE J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena [J]. Combustion and Flame, 2012, 159(4): 1444-1466.
    [17]
    XIOURIS C, YE T, JAYACHANDRAN J, et al. Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments [J]. Combustion & Flame, 2016, 163: 270-283.
    [18]
    GIANNAKOPOULOS G K, GATZOULIS A, FROUZAKIS C E, et al. Consistent definitions of “Flame Displacement Speed” and “Markstein Length” for premixed flame propagation [J]. Combustion & Flame, 2015, 162(4): 1249-1264.
    [19]
    CLAVIN P. Dynamic behavior of premixed flame fronts in laminar and turbulent flows [J]. Progress in Energy and Combustion Science, 1985, 11(1): 1-59.
    [20]
    张艳群, 孟凡荣. MATLAB在图像边缘检测中的应用 [J]. 计算机应用研究, 2004, (06): 144-146.

    ZHANG Yanqun, MENG Fanrong. Application of MATLAB in I mage Edge Detection [J]. Application Research of Computers, 2004, (06): 144-146.
    [21]
    MARKSTEIN G H. Experimental and Theoretical Studies of Flame-Front Stability [J]. Dynamics of Curved Fronts, 1988: 413-423.
    [22]
    KELLEY A P, LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames [J]. Combustion & Flame, 2009, 156(9): 1844-1851.
    [23]
    MARKSTEIN G H. Experimental and Theoretical Studies of Flame-Front Stability [J]. Dynamics of Curved Fronts, 1988: 413-423.
    [24]
    YU W, YANG W, TAY K, et al. Development of a new skeletal mechanism for decalin oxidation under engine relevant conditions [J]. Fuel, 2018, 212: 41-48.
    [25]
    ZHENG C. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure [J]. Combustion & Flame, 2015, 162(6): 2442-2453.
    [26]
    MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
    [27]
    LI Q, HU E, YU C, et al. Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol–air mixtures [J]. Fuel, 2013, 112(3): 263-271.
    [28]
    FISHER E M, PITZ W J, CURRAN H J, et al. Detailed chemical kinetic mechanisms for combustion of oxygenated fuels [J]. Proceedings of the Combustion Institute, 2000, 28(2): 1579-1586.
    [29]
    RANZI E, FRASSOLDATI A, STAGNI A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels [J]. International Journal of Chemical Kinetics, 2014, 46(9): 512-542.
    [30]
    钟北京, 姚文斐. 基于特征值分析的正癸烷骨架和总包简化机理 [J]. 物理化学学报, 2014, 30(2): 210-216.

    ZHONG Beijing, YAO Wenfei. Simplified mechanism of n-decane skeleton and general package based on eigenvalue analysis [J]. Acta Physical Chemistry, 2014, 46(9): 512-542. (in Chinese)
    [31]
    CAI L, PITSCH H. Optimized chemical mechanism for combustion of gasoline surrogate fuels [J]. Combustion & Flame, 2015, 162(5): 1623-1637.
    [32]
    METCALFE W K, BURKE S M, AHMED S S, et al. A hierarchical and comparative kinetic modeling study of C1− C2 hydrocarbon and oxygenated fuels [J]. International Journal of Chemical Kinetics, 2013, 45(10): 638-675.
  • 加载中

Catalog

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(107) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return