Citation: | TANG Jing-hui, QIN Man-man, TANG Le, WEI Hua, QIU Liang, YU Jun. Lactobacillus plantarum ZDY04 reduces Trimethylamine N-Oxide-induced atherosclerosis by promoting reverse cholesterol transport in ApoE-/- mice[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 1(5): 24-34. doi: 10.13381/j.cnki.cjm.00000-00 |
[1] |
Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents(PURE): a prospective cohort study[J]. Lancet, 2020, 395(10226): 785-794. doi: 10.1016/S0140-6736(19)32007-0
|
[2] |
Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368(17): 1575-1584. doi: 10.1056/NEJMoa1109400
|
[3] |
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. doi: 10.1038/nature09922
|
[4] |
Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17(1): 49-60. doi: 10.1016/j.cmet.2012.12.011
|
[5] |
Rath S, Heidrich B, Pieper DH, et al. Uncovering the trimethylamine-producing bacteria of the human gut microbiota[J]. Microbiome, 2017, 5(1): 54. doi: 10.1186/s40168-017-0271-9
|
[6] |
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB[J]. J Am Heart Assoc, 2016, 5(2): e002767. doi: 10.1161/JAHA.115.002767
|
[7] |
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5): 576-585. doi: 10.1038/nm.3145
|
[8] |
Macpherson ME, Hov JR, Ueland T, et al. Gut microbiota-dependent trimethylamine N-oxide associates with inflammation in common variable immunodeficiency[J]. Front Immunol, 2020, 11: 574500. doi: 10.3389/fimmu.2020.574500
|
[9] |
Zhang H, Meng J, Yu H. Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet[J]. Front Physiol, 2017, 8: 944. doi: 10.3389/fphys.2017.00944
|
[10] |
Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(8): 506-514. doi: 10.1038/nrgastro.2014.66
|
[11] |
Din AU, Hassan A, Zhu Y, et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol, 2019, 103(23/24): 9217-9228.
|
[12] |
Wu TR, Lin CS, Chang CJ, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262. doi: 10.1136/gutjnl-2017-315458
|
[13] |
Zhu Y, Li T, Din AU, et al. Beneficial effects of Enterococcus faecalis in hypercholesterolemic mice on cholesterol transportation and gut microbiota[J]. Appl Microbiol Biotechnol, 2019, 103(7): 3181-3191. doi: 10.1007/s00253-019-09681-7
|
[14] |
Qiu L, Tao X, Xiong H, et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice[J]. Food Funct, 2018, 9(8): 4299-4309. doi: 10.1039/C8FO00349A
|
[15] |
Qiu L, Yang D, Tao X, et al. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice[J]. J Microbiol Biotechnol, 2017, 27(8): 1491-1499. doi: 10.4014/jmb.1703.03039
|
[16] |
Kuka J, Liepinsh E, Makrecka-Kuka M, et al. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation[J]. Life Sci, 2014, 117(2): 84-92. doi: 10.1016/j.lfs.2014.09.028
|
[17] |
Wu WK, Panyod S, Ho CT, et al. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota[J]. J Funct Foods, 2015, 15: 408-417. doi: 10.1016/j.jff.2015.04.001
|
[18] |
Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide(TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota[J]. mBio, 2016, 7(2): e02210-02215.
|
[19] |
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7): 1585-1595. doi: 10.1016/j.cell.2015.11.055
|
[20] |
Tripolt NJ, Leber B, Triebl A, et al. Effect of Lactobacillus casei shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study[J]. Atherosclerosis, 2015, 242(1): 141-144. doi: 10.1016/j.atherosclerosis.2015.05.005
|
[21] |
Canyelles M, Tondo M, Cedo L, et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10): 3228. doi: 10.3390/ijms19103228
|
[22] |
Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111-124. doi: 10.1016/j.cell.2016.02.011
|
[23] |
Linton MF, Tao H, Linton EF, et al. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis[J]. Trends Endocrinol Metab, 2017, 28(6): 461-472. doi: 10.1016/j.tem.2017.02.001
|
[24] |
Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol[J]. J Clin Investig, 2002, 110(5): 671-680. doi: 10.1172/JCI0216001
|
[25] |
Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. doi: 10.1016/j.cmet.2016.05.005
|