Issue 9
May. 2023
Turn off MathJax
Article Contents
LIN Yixiong, LIN Yifen, CHEN Lian, et al. Inhibitory Effects of Pre-harvest Spraying Diethyl Aminoethyl Hexanoate on the Disease Occurrence in Longan Fruit during Postharvest Storage and Its Mechanism[J]. Science and Technology of Food Industry, 2023, 44(9): 346−353. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120120
Citation: LIN Yixiong, LIN Yifen, CHEN Lian, et al. Inhibitory Effects of Pre-harvest Spraying Diethyl Aminoethyl Hexanoate on the Disease Occurrence in Longan Fruit during Postharvest Storage and Its Mechanism[J]. Science and Technology of Food Industry, 2023, 44(9): 346−353. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120120

Inhibitory Effects of Pre-harvest Spraying Diethyl Aminoethyl Hexanoate on the Disease Occurrence in Longan Fruit during Postharvest Storage and Its Mechanism

doi: 10.13386/j.issn1002-0306.2021120120
  • Received Date: 13 Dec 2021
  • Issue Publish Date: 01 May 2023
  • In order to elucidate the influences of pre-harvest spraying diethyl aminoethyl hexanoate (DA-6) on the disease occurrence in longan fruit during postharvest storage and its possible mechanism, fruit of ‘Fuyan’ longan at 70, 90 and 110 days after full bloom was sprayed with DA-6 solution at the concentration of 10 mg/kg, and the fruit sprayed with distilled water served as control. The harvested longan fruit were stored at (28±1) ºC. During storage, the index of longan fruit disease, the contents of lignin and total phenolics, the activities of phenylalnine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), chitinase (CHI) and β-1,3-glucanase (GLU) in longan pericarp were evaluated. When stored for 6 d, the fruit disease index in 10 mg/kg DA-6-treated longan was 11.59% lower than control longans. The results also indicated that, contrasted to the control samples, during postharvest storage, pre-harvest spraying DA-6 could lower index of fruit disease, reduce activities of PPO and POD, but retain higher activities of PAL, CHI and GLU, as well as maintain higher levels of lignin and total phenolics. These findings suggested that pre-harvest spraying DA-6 could effectively suppress disease development of postharvest longan fruit, which was due to DA-6 induced-the enhanced activities of disease resistance related-enzymes and the reduced activities of phenols oxidation related-enzymes, the increased levels of disease-resistant substances, and then the enhanced disease resistance.

     

  • loading
  • [1]
    LIN Y F, LIN Y Z, LIN Y X, et al. A novel chitosan alleviates pulp breakdown of harvested longan fruit by suppressing disassembly of cell wall polysaccharides[J]. Carbohydrate Polymers,2019,217:126−134. doi: 10.1016/j.carbpol.2019.04.053
    [2]
    林育钊, 林河通, 林艺芬, 等. “福眼”和“东壁”龙眼采后果肉自溶的差异性研究[J]. 中国食品学报,2017,17(11):181−186. [LIN Y Z, LIN H T, LIN Y F, et al. Studies on the differences of aril breakdown between harvested ‘Fuyan’ and ‘Dongbi’ longans[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(11):181−186.
    [3]
    林毅雄, 林艺芬, 陈莲, 等. 解偶联剂DNP处理对采后龙眼果实呼吸作用和细胞膜透性的影响[J]. 中国食品学报,2018,18(2):191−196. [LIN Y X, LIN Y F, CHEN L, et al. Effects of uncouple agent 2,4-dinitrophenol (DNP) treatment on respiration and cellular membrane' permeability in harvested longan fruit[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(2):191−196.
    [4]
    LIN Y X, LIN H T, CHEN Y H, et al. The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage[J]. Food Chemistry,2020,305:125439. doi: 10.1016/j.foodchem.2019.125439
    [5]
    ZHANG S, LIN Y Z, LIN H T, et al. Lasiodiplodia theobromae (Pat.) Griff. & Maubl. induced disease development and pericarp browning of harvested longan fruit in association with membrane lipids metabolism[J]. Food Chemistry,2018,244:93−101. doi: 10.1016/j.foodchem.2017.10.020
    [6]
    LIN Y F, CHEN M Y, LIN H T, et al. DNP and ATP induced alteration in disease development of Phomopsis longanae Chi inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system[J]. Food Chemistry,2017,228:497−505. doi: 10.1016/j.foodchem.2017.02.045
    [7]
    CHEN Y H, SUN J Z, LIN H T, et al. Salicylic acid treatment suppresses Phomopsis longanae Chi-induced disease development of postharvest longan fruit by modulating membrane lipid metabolism[J]. Postharvest Biology and Technology,2020,164:111168. doi: 10.1016/j.postharvbio.2020.111168
    [8]
    TANG J Y, CHEN H B, LIN H T, et al. Acidic electrolyzed water treatment delayed fruit disease development of harvested longans through inducing the disease resistance and maintaining the ROS metabolism systems[J]. Postharvest Biology and Technology,2021,171:111349. doi: 10.1016/j.postharvbio.2020.111349
    [9]
    CHEN M Y, LIN H T, ZHANG S, et al. Effects of adenosine triphosphate (ATP) treatment on postharvest physiology, quality and storage behavior of longan fruit[J]. Food and Bioprocess Technology,2015,8:971−982. doi: 10.1007/s11947-014-1462-z
    [10]
    GE Y H, CHEN Y R, LI C Y, et al. Effect of sodium nitroprusside treatment on shikimate and phenylpropanoid pathways of apple fruit[J]. Food Chemistry,2019,290:263−269. doi: 10.1016/j.foodchem.2019.04.010
    [11]
    罗吉庆, 张永杰, 吴艾频, 等. 外源茉莉酸甲酯和异亮氨酸对灰霉菌侵染后圣女果抗病性酶酶活的影响[J]. 食品科学技术学报,2021,39(4):123−130. [LUO J Q, ZHANG Y J, WU A P, et al. Effects of exogenous methyl jasmonate and isoleucine on resistance related enzyme activity of cherry tomatoes after Botrytis cineral infection[J]. Journal of Food Science and Technology,2021,39(4):123−130.
    [12]
    张琼琼, 魏佳, 张健, 等. 硫化氢熏蒸对无核白葡萄采后细胞壁及病害的影响[J]. 食品工业科技,2020,41(13):277−283. [ZHANG Q Q, WEI J, ZHANG J, et al. Effect of hydrogen sulfide fumigation on cell wall and disease of postharvest thompson seedless grape[J]. Science and Technology of Food Industry,2020,41(13):277−283.
    [13]
    JIANG X J, LIN H T, LIN M S, et al. A novel chitosan formulation treatment induces disease resistance of harvested litchi fruit to Peronophythora litchii in association with ROS metabolism[J]. Food Chemistry,2018,266:299−308. doi: 10.1016/j.foodchem.2018.06.010
    [14]
    毛淑波, 朱娜, 韦莹莹, 等. 采前喷施拮抗菌罗伦隐球酵母对草莓保鲜效果的影响[J]. 食品工业科技,2013,34(4):344−348. [MAO S B, ZHU N, WEI Y Y, et al. Effect of preharvest spraying antagonistic yeast Cryptococcus laurentii on the preservation of strawberry[J]. Science and Technology of Food Industry,2013,34(4):344−348.
    [15]
    郑素慧, 何庆, 张健, 等. 采前水杨酸处理对红地球葡萄潜伏侵染及采后灰霉病的防控效果[J]. 食品工业科技,2021,42(2):256−263. [ZHENG S H, HE Q, ZHANG J, et al. effects of latent infection of preharvest pathogens and inhibition of post-harvest gray mold of red globe grapes treated with salicylic acid[J]. Science and Technology of Food Industry,2021,42(2):256−263.
    [16]
    林毅雄, 林艺芬, 陈艺晖, 等. 采前喷施胺鲜酯对采后龙眼果实品质和耐贮性的影响[J]. 热带作物学报,2016,37(9):1819−1825. [LIN Y X, LIN Y F, CHEN Y H, et al. Effects of pre-harvest spraying diethyl aminoethyl hexanoate on quality and storability of harvested longan fruit[J]. Chinese Journal of Tropical Crops,2016,37(9):1819−1825. doi: 10.3969/j.issn.1000-2561.2016.09.026
    [17]
    谭晓红, 王贵禧, 陈金印, 等. 采前DA-6和DCPTA处理对冬枣果实品质发育的影响[J]. 林业科学研究,2007,20(4):485−489. [TANG X H, WANG G X, CHEN J Y, et al. Effects of DA-6 and DCPTA pre-harvest treatment on the quality promotion of ‘Dongzao’ jujube (Zizyphus jujuba Mill. cv. ‘Dongzao’) fruits[J]. Forest Research,2007,20(4):485−489. doi: 10.3321/j.issn:1001-1498.2007.04.008
    [18]
    姚艳丽, 孙光明, 刘忠华, 等. DA-6和DCPTA对菠萝果实品质发育的影响[J]. 热带作物学报,2011,32(7):1218−1222. [YAO Y L, SUN G M, LIU Z H, et al. Effect of DA-6 and DCPTA on the quality development of pineapple[J]. Chinese Journal of Tropical Crops,2011,32(7):1218−1222. doi: 10.3969/j.issn.1000-2561.2011.07.007
    [19]
    陈艺晖, 林河通, 林艺芬, 等. 拟茎点霉侵染对龙眼果实采后果皮褐变和活性氧代谢的影响[J]. 中国农业科学,2011,44(23):4858−4866. [CHEN Y H, LIN H T, LIN Y F, et al. Effects of Phomopsis longanae Chi infection on browning and active oxygen metabolism in pericarp of harvested longan fruits[J]. Scientia Agricultura Sinica,2011,44(23):4858−4866. doi: 10.3864/j.issn.0578-1752.2011.23.012
    [20]
    ZENG L Z, SHI L L, LIN H T, et al. Paper-containing 1-methylcyclopropene treatment suppresses fruit decay of fresh Anxi persimmons by enhancing disease resistance[J]. Food Quality and Safety,2021,5:1−8.
    [21]
    BRADFORD M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248−254. doi: 10.1016/0003-2697(76)90527-3
    [22]
    LIN Y Z, LI N, LIN H T, et al. Effects of chitosan treatment on the storability and quality properties of longan fruit during storage[J]. Food Chemistry,2020,306:125627. doi: 10.1016/j.foodchem.2019.125627
    [23]
    WU Y J, LIN H T, LIN Y F, et al. Effects of biocontrol bacteria Bacillus amyloliquefaciens LY-1 culture broth on quality attributes and storability of harvested litchi fruit[J]. Postharvest Biology and Technology,2017,132:81−87. doi: 10.1016/j.postharvbio.2017.05.021
    [24]
    董柏余, 汤洪敏, 姚秋萍, 等. 采后水杨酸处理对金刺梨果实活性氧和苯丙烷代谢的影响[J]. 食品工业科技,2021,42(17):308−315. [DONG B Y, TANG H M, YAO Q P, et al. Effects of salicylic acid treatment on reactive oxygen species metabolism and phenylpropanoid pathway in Rosa sterilis[J]. Science and Technology of Food Industry,2021,42(17):308−315.
    [25]
    赵云峰, 林河通, 林艺芬, 等. 热处理延缓采后龙眼果实果皮褐变及其与酚类物质代谢的关系[J]. 现代食品科技,2014,30(5):218−224. [ZHAO Y F, LIN H T, LIN Y F, et al. Effect of heat treatment on browning delaying and phenolics metabolism in pericarp of harvested longan fruit[J]. Modern Food Science and Technology,2014,30(5):218−224.
    [26]
    林福兴, 林毅雄, 刘木水, 等. 采后“乌叶”和“兰竹”荔枝果实果皮褐变的差异性研究[J]. 现代食品科技,2015,31(3):121−125, 102. [LIN F X, LIN Y X, LIU M S, et al. The difference in pericarp browning between harvested ‘Wuye' and ‘Lanzhu' litchis[J]. Modern Food Science and Technology,2015,31(3):121−125, 102.
    [27]
    何庆, 郑素慧, 张健, 等. 采前茉莉酸甲酯处理提高红地球葡萄的贮藏品质[J]. 现代食品科技,2020,36(9):126−133. [HE Q, ZHENG S H, ZHANG J, et al. Pre-harvest methyl jasmonate treatment improves storage quality of Vitis vinifera L. cv. red globe grapes[J]. Modern Food Science and Technology,2020,36(9):126−133.
    [28]
    王英珍, 程瑞, 张绍铃, 等. 采前茉莉酸甲酯(MeJA)处理对梨果实抗病性的影响[J]. 果树学报,2016,33(6):694−700. [WANG Y Z, CHENG R, ZHANG S L, et al. Effect of pre-harvest methyl jasmonate treatment on disease resistance in pear fruit[J]. Journal of Fruit Science,2016,33(6):694−700.
    [29]
    LI S G, XU Y H, BI Y, et al. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest[J]. Postharvest Biology and Technology,2019,157:110962. doi: 10.1016/j.postharvbio.2019.110962
    [30]
    LIU C H, ZHENG H H, SHENG K L, et al. Effects of melatonin treatment on the postharvest quality of strawberry fruit[J]. Postharvest Biology and Technology,2018,139:47−55. doi: 10.1016/j.postharvbio.2018.01.016
    [31]
    ZHANG W L, ZHAO H D, ZHANG J, et al. Different molecular weights chitosan coatings delay the senescence of postharvest nectarine fruit in relation to changes of redox state and respiratory pathway metabolism[J]. Food Chemistry,2019,289:160−168. doi: 10.1016/j.foodchem.2019.03.047
    [32]
    赵亚婷, 刘豆豆, 朱璇, 等. 采前壳寡糖处理对杏果实黑斑病的抗性诱导[J]. 西北植物学报,2015,35(7):1409−1414. [ZHAO Y T, LIU D D, ZHU X, et al. Resistance induction of pre-harvest chitosan oligosaccharide treatment to black spot in apricots fruits[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(7):1409−1414. doi: 10.7606/j.issn.1000-4025.2015.07.1409
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return