Issue 9
May. 2023
Turn off MathJax
Article Contents
WANG Yifan, YU Mingxin, PEI Longying, et al. Rapid Detection of Cadmium and Arsenic in Dried Auricularia auricula by High Definition X-ray Fluorescence Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(9): 333−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060260
Citation: WANG Yifan, YU Mingxin, PEI Longying, et al. Rapid Detection of Cadmium and Arsenic in Dried Auricularia auricula by High Definition X-ray Fluorescence Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(9): 333−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060260

Rapid Detection of Cadmium and Arsenic in Dried Auricularia auricula by High Definition X-ray Fluorescence Spectrometry

doi: 10.13386/j.issn1002-0306.2022060260
  • Received Date: 28 Jun 2022
  • Issue Publish Date: 01 May 2023
  • The contents of cadmium and arsenic in dried Auricularia auricula were rapidly detected by high definition X-ray fluorescence (HDXRF) spectrometry. In the process of the experiment, the dried Auricularia auricula samples were pre-treated, and the three experimental conditions of particle size, sample weight, and instrument measurement time were optimized. Figures of merit such as precision, reproducibility, and stability were evaluated. The results showed that, the optimal detection conditions of HDXRF were: particle size of 100 meshes, sample weight of 0.80 g, and measurement time of 600 s. This method allowed direct detection of cadmium and arsenic in 15 min, and a detection limit of 0.035 mg/kg of cadmium and 0.012 mg/kg of arsenic, respectively. The relative standard deviations (RSD) of precision, reproducibility and stability of HDXRF were all below 10%. Finally, the results of HDXRF were compared with inductively coupled plasma mass spectrometry (ICP-MS). The results were accurate and the relative errors were less than 20%. It indicates that the method of HDXRF can meet the rapid detection requirements of cadmium and arsenic in dried Auricularia auricula.

     

  • loading
  • [1]
    和丽忠, 杜丽娟, 严红梅, 等. 微波消解-电感耦合等离子体-质谱法测定黑木耳中铅、镉、砷、铜、锌和铬[J]. 光谱实验室,2012,29(1):435−438. [HE L Z, DU L J, YAN H M, et al. Determination of lead, cadmium, arsenic, copper, zinc and chromium in black fungus by microwave digestion-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(1):435−438. doi: 10.3969/j.issn.1004-8138.2012.01.107
    [2]
    ZHANG T T, ZHAO W Y, XIE B Z, et al. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota[J]. Journal of Functional Foods,2020,72:104038. doi: 10.1016/j.jff.2020.104038
    [3]
    王翠菊, 刘贵波, 孙成, 等. 木耳多糖影响家兔动脉粥样硬化斑块中基质金属蛋白酶-13表达的研究[J]. 中国药物与临床,2007(5):355−357, 401. [WANG C J, LIU G B, SUN C, et al. Effects of Auricularia auricula polysaccharide on the expression of MMP-13 in rabbit arteriosclerosis plaque[J]. Chinese Remedies & Clinics,2007(5):355−357, 401. doi: 10.3969/j.issn.1671-2560.2007.05.010
    [4]
    刘丹丹, 朱志学, 马健, 等. 地木耳多糖的抗氧化活性与抗菌活性研究[J]. 食品安全质量检测学报,2019,10(4):921−926. [LIU D D, ZHU Z X, MA J, et al. Research on the antioxidant and antibacterial activity of polysaccharides from Nostoc commune[J]. Journal of Food Safety & Quality,2019,10(4):921−926. doi: 10.3969/j.issn.2095-0381.2019.04.017
    [5]
    LIU B R, HUANG Q, CAI H J, et al. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China[J]. Food Chemistry,2015,188:294−300. doi: 10.1016/j.foodchem.2015.05.010
    [6]
    李欣芝. 原子吸收光谱法在食品重金属检测中的应用[J]. 食品安全导刊,2022(7):170−172. [LI X Z. Application of atomic absorption spectrometry in the detection of heavy metals in food[J]. China Food Safety Magazine,2022(7):170−172. doi: 10.3969/j.issn.1674-0270.2022.7.spaqdk202207055
    [7]
    李秀林, 田先娇, 田孟华, 等. 电感耦合等离子体原子发射光谱(ICP-AES)法测定胡蜂酒中无机元素[J]. 中国无机分析化学,2022,12(1):155−162. [LI X L, TIAN X J, TIAN M H, et al. Determination of inorganic elements in Vespa Wine by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry,2022,12(1):155−162. doi: 10.3969/j.issn.2095-1035.2022.01.025
    [8]
    SOBHANARDAKANI S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon[J]. Marine Pollution Bulletin,2017,123:34−38. doi: 10.1016/j.marpolbul.2017.09.033
    [9]
    刘淑萍, 乔继浩. 微波消解-电感耦合等离子体质谱法测量小麦粉中铅、镉、砷和铬[J]. 中国无机分析化学,2022,12(3):17−23. [LIU S P, QIAO J H. Determination of lead, cadmium, arsenic and chromium in wheat flour by inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry,2022,12(3):17−23. doi: 10.3969/j.issn.2095-1035.2022.03.004
    [10]
    KATO LS, FERNANDES EAD, RAAB A. Arsenic and cadmium contents in Brazilian rice from different origins can vary more than two orders of magnitude[J]. Food Chemistry,2019,286:644−650. doi: 10.1016/j.foodchem.2019.02.043
    [11]
    李茂刚, 梁晶, 闫春华, 等. 基于激光诱导击穿光谱技术结合随机森林算法快速定量分析土壤中重金属元素[J]. 分析化学,2021,49(8):1410−1418. [LI M G, LIANG J, YAN C H, et al. Rapid quantitative analysis of heavy metal elements in soil based on laser-induced breakdown spectroscopy combined with random forest algorithm[J]. Chinese Journal of Analytical Chemistry,2021,49(8):1410−1418. doi: 10.19756/j.issn.0253-3820.211067
    [12]
    ANDREY D, DUFRIER JP, PERRING L. Analytical capabilities of energy dispersive X-ray fluorescence for the direct quantification of iron in cocoa powder and powdered cocoa drink[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2018,148:137−142. doi: 10.1016/j.sab.2018.06.014
    [13]
    MARGUI E, QUERALT I, ANDREY D, et al. Analytical potential of total reflection X-ray fluorescence (TXRF) instrumentation for simple determination of major and trace elements in milk powder samples[J]. Food Chemistry,2022,383:132590. doi: 10.1016/j.foodchem.2022.132590
    [14]
    HABIB-UR-REHMAN, REHANA I, YAWAR W. Determination of inorganic elements in milk powder using wavelength dispersive X-ray fluorescence spectrometer[J]. International Journal of Dairy Technology,2012,65:98−103. doi: 10.1111/j.1471-0307.2011.00730.x
    [15]
    许艳霞, 倪小英, 陈志军, 等. X射线荧光光谱法测定稻米镉含量的影响因素[J]. 粮食与饲料工业,2017(6):60−64. [XU Y X, NI X Y, CHEN Z J, et al. Affecting factors of determination of cadmium content in rice by X-ray fluorescence spectrometry[J]. Cereal & Feed Industry,2017(6):60−64. doi: 10.7633/j.issn.1003-6202.2017.06.016
    [16]
    PASHKOVA G V, SMAGUNOVA A N, FINKELSHTEIN A L. X-ray fluorescence analysis of milk and dairy products: A review[J]. Trac-Trends in Analytical Chemistry,2018,106:183−189. doi: 10.1016/j.trac.2018.06.014
    [17]
    DALY K, FENELON A. A rapid and multi-element method for the analysis of major nutrients in grass (Lolium perenne) using energy-dispersive X-ray fluorescence spectroscopy[J]. Irish Journal of Agricultural and Food Research,2017,56:1−11. doi: 10.1515/ijafr-2017-0001
    [18]
    彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报,2018,37(7):1386−1395. [PENG H L, YANG Z S, ZHAO J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J]. Journal of Agro-Environment Science,2018,37(7):1386−1395. doi: 10.11654/jaes.2018-0568
    [19]
    DOS SANTOS F R, DE OLIVEIRA J F, BARBOSA G M C, et al. Comparison between energy dispersive X-ray fluorescence spectral data and elemental data for soil attributes modelling[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2021,185:106303. doi: 10.1016/j.sab.2021.106303
    [20]
    陈宣, 王丽香, 承书振, 等. 高精度便携式X射线荧光光谱仪对污水厂剩余污泥重金属的快速测定[J]. 净水技术,2019,38(12):17−21, 35. [CHEN X, WANG L X, CHENG S Z, et al. Rapid determination of heavy metals in excess sludge of wwtp with high-precision portable X-ray fluorescence spectrometer[J]. Water Purification Technology,2019,38(12):17−21, 35. doi: 10.15890/j.cnki.jsjs.2019.12.004
    [21]
    THOMPSON M, ELLISON S L R, WOOD R. Harmonized guidelines for single-laboratory validation of methods of analysis-(IUPAC Technical Report)[J]. Pure and Applied Chemistry,2002,74:835−855. doi: 10.1351/pac200274050835
    [22]
    马江媛, 桑晓霞, 李叶丽, 等. 基于能量色散X射线荧光光谱分析技术对茶叶检测条件的优化[J]. 食品与发酵工业,2020,46(4):282−286. [MA J Y, SANG X X, LI Y L, et al. Optimization of tea detection conditions based on EDXRF technology[J]. Food and Fermentation Industries,2020,46(4):282−286. doi: 10.13995/j.cnki.11-1802/ts.021738
    [23]
    桑晓霞, 马江媛, 温丹华, 等. 基于能量色散X射线荧光光谱技术检测大米中镉的研究[J]. 食品工业科技,2020,41(8):268−272. [SANG X X, MA J Y, WEN D H, et al. Detection of Cd in rice based on energy dispersive X-ray fluorescence spectrometry[J]. Science and Technology of Food Industry,2020,41(8):268−272. doi: 10.13386/j.issn1002-0306.2020.08.042
    [24]
    刘国庆. 微波消解-ICP-MS法测定红菇中的微量元素[J]. 食品研究与开发,2016,37(17):130−133. [LIU G Q. Determination of trace elements in Russula by microwave digestion-ICP-MS[J]. Food Research and Development,2016,37(17):130−133. doi: 10.3969/j.issn.1005-6521.2016.17.032
    [25]
    BENDICHO C, DELOOSVOLLEBREGT M T C. Solid sampling in electrothermal atomic-absorption spectrometry using commercial atomizers-a review[J]. Journal of Analytical Atomic Spectrometry,1991,6:353−374. doi: 10.1039/ja9910600353
    [26]
    王纪华, 刘晓丽, 高龙, 等. X射线荧光光谱法测定镍电解液中的镍、氯、硫酸根[J]. 冶金分析,2012,32(12):29−33. [WANG J H, LIU X L, GAO L, et al. Determination of nickel, chlorine and sulfate in nickel electrolyte by X-ray fluorescence spectrometry[J]. Metallurgical Analysis,2012,32(12):29−33. doi: 10.3969/j.issn.1000-7571.2012.12.005
    [27]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2762-2017食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社.

    National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 2762-2017 National food safety standard Limits of contaminants in food[S]. Beijing: Standards Press of China.
    [28]
    周衡刚, 王伟, 陈雯, 等. 粉末压片-能量色散X射线荧光光谱法测定鱼粉中铬、镉、砷、汞、铅含量[J]. 饲料研究,2021,44(14):123−126. [ZHOU H G, WANG W, CHEN W, et al. Determination of chromium, cadmium, arsenic, mercury and lead in fish meals by energy dispersive X-Ray fluorescence spectrometry with powder pelleting preparation using suspension sampling[J]. Feed Research,2021,44(14):123−126. doi: 10.13557/j.cnki.issn1002-2813.2021.14.028
    [29]
    廖学亮, 沈学静, 刘明博, 等. 台式能量色散X射线荧光光谱直接检测大米中的Cd[J]. 食品科学,2014,35(24):169−173. [LIAO X L, SHEN X J, LIU M B, et al. Direct determination of cadmium in rice by bench-top energy dispersive X-ray fluorescence spectrometer[J]. Food Science,2014,35(24):169−173. doi: 10.7506/spkx1002-6630-201424032
    [30]
    杨立红, 阮新, 曹莹莹, 等. 电感耦合等离子体质谱法测定20种食用菌无机元素含量[J]. 营养学报,2013,35(4):411−413. [YANG L H, RUAN X, CAO Y Y, et al. Determination of inorganic elements in 20 edible mushrooms by inductively coupled plasma mass spectrometry[J]. Acta Nutrimenta Sinica,2013,35(4):411−413. doi: 10.13325/j.cnki.acta.nutr.sin.2013.04.002
    [31]
    王英, 张银, 张薇, 等. ICP-MS法同时测定云南野生牛肝菌中5种金属元素[J]. 食品工业,2018,39(9):301−304. [WANG Y, ZHANG Y, ZHANG W, et al. Simultaneous detection of five elements of wild edible Boletus in Yunnan Province by ICP-MS[J]. The Food Industry,2018,39(9):301−304.
    [32]
    YIN L L, SHI G Q, TIAN Q, et al. Determination of the metals by ICP-MS in wild mushrooms from Yunnan, China[J]. Journal of Food Science,2012,77:T151−T155. doi: 10.1111/j.1750-3841.2012.02810.x
    [33]
    AVILA D V L, SOUZA S O, COSTA S S L, et al. Determination of Zn in dry feeds for cats and dogs by energy-dispersive X-Ray fluorescence spectrometry[J]. Journal of Aoac International,2016,99:1572−1575.
  • 加载中

Catalog

    Figures(3)  / Tables(5)

    Article Metrics

    Article views(19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return