Citation: | ZHENG Yalu, ZHU Shengyu, XIONG Xiaohui, et al. Research Progress of Antibacterial Hydrogels in the Food Field[J]. Science and Technology of Food Industry, 2023, 44(9): 446−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060287 |
[1] |
刘艺楠. 传统抗菌剂与新型抗菌剂对细菌生长及细菌耐药的影响[D]. 石家庄: 河北科技大学, 2019
LIU Y N. Effects of traditional antibacterial agents and new antibacterial agents on bacterial growth and bacterial resistance[D]. Shijiazhaung: Hebei University of Science & Technology, 2019.
|
[2] |
MOCAN T, MATEA C T, POP T, et al. Carbon nanotubes as anti-bacterial agents[J]. Cellular and Molecular Life Sciences,2017,74(19):3467−3479. doi: 10.1007/s00018-017-2532-y
|
[3] |
AMIN R M, MAHMOUD R K, GADELHAK Y, et al. Gamma irradiated green synthesized zero valent iron nanoparticles as promising antibacterial agents and heavy metal nano-adsorbents[J]. Environmental Nanotechnology, Monitoring & Management,2021,16:100461.
|
[4] |
ZHANG Z, HAN X. Polymer antibacterial agent immobilized polyethylene films as efficient antibacterial cling films[J]. Materials Science and Engineering:C,2019,105:110088. doi: 10.1016/j.msec.2019.110088
|
[5] |
DEBBABI S, GROLEAU M, LÉTOURNEAU M, et al. Antibacterial properties of the pituitary adenylate cyclase-activating polypeptide: A new human antimicrobial peptide[J]. PLOS ONE,2018,13(11):e207366.
|
[6] |
XIE Y, WANG X, SUN M, et al. Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity[J]. Journal of Materials Science,2022,57(8):5198−5209. doi: 10.1007/s10853-022-06982-7
|
[7] |
RIZWAN M, RUBINA GILANI S, IQBAL DURANI A, et al. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field[J]. Journal of Advanced Research,2021,33:15−40. doi: 10.1016/j.jare.2021.03.007
|
[8] |
DING H, LIANG X, ZHANG X N, et al. Tough supramolecular hydrogels with excellent self-recovery behavior mediated by metal-coordination interaction[J]. Polymer,2019,171:201−210. doi: 10.1016/j.polymer.2019.03.061
|
[9] |
STENSTRÖM P, FAN Y, ZHANG Y, et al. UV-cured antibacterial hydrogels based on PEG and monodisperse heterofunctional Bis-MPA dendrimers[J]. Molecules,2021,26(8):2364. doi: 10.3390/molecules26082364
|
[10] |
LI X, LIU W, LI Y, et al. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR[J]. Journal of Materials Chemistry B,2020,8(23):5117−5130. doi: 10.1039/D0TB00798F
|
[11] |
LI M, ZHANG Z, LIANG Y, et al. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair[J]. ACS Applied Materials & Interfaces,2020,12(32):35856−35872.
|
[12] |
JAYAKUMAR A, JOSE V K, LEE J M. Hydrogels for medical and environmental applications[J]. Small Methods,2020,4(3):1900735. doi: 10.1002/smtd.201900735
|
[13] |
HAN D, LI Y, LIU X, et al. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds[J]. Chemical Engineering Journal,2020,396:125194. doi: 10.1016/j.cej.2020.125194
|
[14] |
SHARMA S, TIWARI S. A review on biomacromolecular hydrogel classification and its applications[J]. International Journal of Biological Macromolecules,2020,162:737−747. doi: 10.1016/j.ijbiomac.2020.06.110
|
[15] |
LIU X, HE X, YANG B, et al. Dual physically cross-linked Hydrogels incorporating hydrophobic interactions with promising repairability and ultrahigh elongation[J]. Advanced Functional Materials,2021,31(3):2008187. doi: 10.1002/adfm.202008187
|
[16] |
SHAO C, MENG L, WANG M, et al. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels[J]. ACS Applied Materials & Interfaces,2019,11(6):5885−5895.
|
[17] |
YU H C, LI C Y, DU M, et al. Improved toughness and stability of κ-carrageenan/polyacrylamide double-network hydrogels by dual cross-linking of the first network[J]. Macromolecules,2019,52(2):629−638. doi: 10.1021/acs.macromol.8b02269
|
[18] |
LI D, FEI X, WANG K, et al. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing[J]. Journal of Materials Chemistry B,2021,9(34):6844−6855. doi: 10.1039/D1TB01257F
|
[19] |
WANG W, ZHANG Y, LIU W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions[J]. Progress in Polymer Science,2017,71:1−25. doi: 10.1016/j.progpolymsci.2017.04.001
|
[20] |
ZHANG R, FU Q, ZHOU K, et al. Ultra stretchable, tough and self-healable poly (acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds[J]. Polymer,2020,199:122603. doi: 10.1016/j.polymer.2020.122603
|
[21] |
ZHOU H, ZHANG M, CAO J, et al. Highly flexible, tough, and self-healable hydrogels enabled by dual cross-linking of triblock copolymer micelles and ionic interactions[J]. Macromolecular Materials and Engineering,2017,302(2):1600352. doi: 10.1002/mame.201600352
|
[22] |
LI S, WANG X, CHEN J, et al. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing[J]. Int J Biol Macromol,2022,202:657−670. doi: 10.1016/j.ijbiomac.2022.01.080
|
[23] |
BERMEJO-VELASCO D, AZEMAR A, OOMMEN O P, et al. Modulating thiol pKa promotes disulfide formation at physiological pH: An elegant strategy to design disulfide cross-linked hyaluronic acid hydrogels[J]. Biomacromolecules,2019,20(3):1412−1420. doi: 10.1021/acs.biomac.8b01830
|
[24] |
SONG Y, XU L, XU L, et al. Radiation cross-linked gelatin/sodium alginate/carboxymethylcellulose sodium hydrogel for the application as debridement glue paste[J]. Polym Bull (Berl),2022,79(2):725−742. doi: 10.1007/s00289-020-03525-5
|
[25] |
FU S, ZHOU L, ZENG P, et al. Antibacterial chitosan-gelatin hydrogel beads cross-linked by riboflavin under ultraviolet a irradiation[J]. Fibers and Polymers,2021,23(2):315−320.
|
[26] |
CHANG K, CHEN W, CHEN C, et al. Chemical cross-linking on gelatin-hyaluronan loaded with hinokitiol for the preparation of guided tissue regeneration hydrogel membranes with antibacterial and biocompatible properties[J]. Materials Science and Engineering: C,2021,119:111576. doi: 10.1016/j.msec.2020.111576
|
[27] |
LEE S C, KWON I K, PARK K. Hydrogels for delivery of bioactive agents: A historical perspective[J]. Advanced Drug Delivery Reviews,2013,65(1):17−20. doi: 10.1016/j.addr.2012.07.015
|
[28] |
许雨芩, 杨建军, 吴庆云, 等. 抗菌型高分子水凝胶研究进展[J]. 化工新型材料,2022,50(9):218−224, 228. [XU Y Q, YANG J J, WU Q Y, et al. Research progress of antibacterial polymer hydrogels[J]. New Chemical Materials,2022,50(9):218−224, 228.
|
[29] |
ZHANG R, YU B, TIAN Y, et al. Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare[J]. Applied Materials Today,2022,26:101396. doi: 10.1016/j.apmt.2022.101396
|
[30] |
周春才, 袁跃, 苏小凯. 抗菌水凝胶研究进展[J]. 化学世界,2016,57(1):51−55. [ZOU C C, YUAN Y, SU X K. Progress in synthesis of antibacterial hydrogel[J]. Chemical World,2016,57(1):51−55.
|
[31] |
LIU L, SHI J, SUN X, et al. Thermo-responsive hydrogel-supported antibacterial material with persistent photocatalytic activity for continuous sterilization and wound healing[J]. Composites Part B: Engineering,2022,229:109459. doi: 10.1016/j.compositesb.2021.109459
|
[32] |
章紫英, 邓利珍, 戴涛涛, 等. 多糖基水凝胶载体及其干燥方式研究进展[J]. 食品工业科技,2021,42(23):438−446. [ZHANG Z Y, DENG L Z, DAI T T, et al. Research progress of polysaccharide-based hydrogel carriers and their drying method[J]. Science and Technology of Food Industry,2021,42(23):438−446.
|
[33] |
何天盈, 殷娴, 孙博, 等. 抑菌型表面活性剂抑菌机理及应用[J]. 日用化学工业,2018,48(7):408−414. [HE T Y, YIN X, SUN B, et al. Antimicrobial mechanisms and applications of antimicrobial surfactants[J]. China Surfactant Detergent & Cosmetics,2018,48(7):408−414.
|
[34] |
CHANG C, ZHANG L. Cellulose-based hydrogels: Present status and application prospects[J]. Carbohydrate Polymers,2011,84(1):40−53. doi: 10.1016/j.carbpol.2010.12.023
|
[35] |
SHAGHALEH H, HAMOUD Y A, XU X, et al. Thermo-/pH-responsive preservative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit packaging[J]. International Journal of Biological Macromolecules,2021,183:1911−1924. doi: 10.1016/j.ijbiomac.2021.05.208
|
[36] |
SHARIATINIA Z, JALALI A M. Chitosan-based hydrogels: Preparation, properties and applications[J]. International Journal of Biological Macromolecules,2018,115:194−220. doi: 10.1016/j.ijbiomac.2018.04.034
|
[37] |
夏金兰, 王春, 刘新星. 抗菌剂及其抗菌机理[J]. 中南大学学报(自然科学版),2004(1):31−38. [XIA J L, WANG C, LIU X X. Research on antimicrobial agents and their mechanisms of actions[J]. Journal of Central South University (Science and Technology),2004(1):31−38.
|
[38] |
CHEN H, XING X, TAN H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing[J]. Materials Science & Engineering C,2017,70(Pt1):287−295.
|
[39] |
KANG X, DENG L, YI L, et al. A facile method for preparation of green and antibacterial hydrogel based on chitosan and water-soluble 2, 3-dialdehyde cellulose[J]. Cellulose,2021,28(10):6403−6416. doi: 10.1007/s10570-021-03879-7
|
[40] |
刘玉华, 魏宏亮, 李松茂, 等. 淀粉基水凝胶的研究进展[J]. 化工进展,2021,40(12):6738−6751. [LIU Y H, WEI H L, LI S M, et al. Research progress of starch-based hydrogels[J]. Chemical Industry and Engineering Progress,2021,40(12):6738−6751.
|
[41] |
CHIN S F, ROMAINOR A N B, PANG S C, et al. Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers[J]. Journal of Drug Delivery Science and Technology,2019,54:101239. doi: 10.1016/j.jddst.2019.101239
|
[42] |
肖九梅. 解读食品抗菌剂包装材料的性能特点及其应用机理[J]. 塑料包装,2017,27(6):22−28. [XIAO J M. Reading performance characteristics and the application mechanism of food antimicrobial packaging materials[J]. Plastics Packaging,2017,27(6):22−28.
|
[43] |
SAIDIN S, JUMAT M A, MOHD AMIN N A A, et al. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application[J]. Materials Science and Engineering: C,2021,118:111382. doi: 10.1016/j.msec.2020.111382
|
[44] |
HAMAD A, KHASHAN K S, HADI A. Silver nanoparticles and silver ions as potential antibacterial agents[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(12):4811−4828. doi: 10.1007/s10904-020-01744-x
|
[45] |
DAI T, WANG C, WANG Y, et al. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity[J]. ACS Applied Materials & Interfaces,2018,10(17):15163−15173.
|
[46] |
BOCCALON E, PICA M, ROMANI A, et al. Facile preparation of organic-inorganic hydrogels containing silver or essential oil with antimicrobial effects[J]. Applied clay Science,2020,190:105567. doi: 10.1016/j.clay.2020.105567
|
[47] |
马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造,2016,35(1):5−9. [MA C, WU Y. Research on antimicrobial agents and their mechanism of actions[J]. China Brewing,2016,35(1):5−9.
|
[48] |
ZHANG J, TAN W, LI Q, et al. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing[J]. Marine Drugs,2021,19(9):479. doi: 10.3390/md19090479
|
[49] |
ALVES F, GOMES GUIMARÃES G, MAYUMI INADA N, et al. Strategies to improve the antimicrobial efficacy of photodynamic, sonodynamic, and sonophotodynamic therapies[J]. Lasers in Surgery and Medicine,2021,53(8):1113−1121. doi: 10.1002/lsm.23383
|
[50] |
CUI Q, YUAN H, BAO X, et al. Synergistic photodynamic and photothermal antibacterial therapy based on a conjugated polymer nanoparticle-doped hydrogel[J]. ACS Applied Bio Materials,2020,3(7):4436−4443. doi: 10.1021/acsabm.0c00423
|
[51] |
FEDATTO ABELHA T, RODRIGUES LIMA CAIRES A. Light-activated conjugated polymers for antibacterial photodynamic and photothermal therapy[J]. Advanced NanoBiomed Research,2021,1(7):2100012. doi: 10.1002/anbr.202100012
|
[52] |
刘东亮, 饶璐, 赵媛, 等. 光敏抗菌复合水凝胶的辐射制备及应用现状[J]. 辐射研究与辐射工艺学报,2021,39(6):4−12. [LIU D L, RAO L, ZHAO Y, et al. Radiation preparation and application status of photosensitive antibacterial composite hydrogel[J]. Journal of Radiation Research and Radiation Processing,2021,39(6):4−12.
|
[53] |
陈鹏, 杨凤英, 顾志鹏, 等. 抗氧化水凝胶的研究进展[J]. 功能高分子学报,2021,34(2):182−194. [CHEN P, YANG F Y, GU Z P, et al. Recent progress in antioxidant hydrogels[J]. Journal of Functional Polymers,2021,34(2):182−194.
|
[54] |
ZHU S, SONG Y, PEI J, et al. The application of photodynamic inactivation to microorganisms in food[J]. Food Chemistry: X,2021,12:100150. doi: 10.1016/j.fochx.2021.100150
|
[55] |
KUMAR A V P, DUBEY S K, TIWARI S, et al. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression[J]. International Journal of Pharmaceutics,2021,606:120848. doi: 10.1016/j.ijpharm.2021.120848
|
[56] |
TAO B, LIN C, DENG Y, et al. Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy[J]. Journal of Materials Chemistry B,2019,7(15):2534−2548. doi: 10.1039/C8TB03272F
|
[57] |
CHEN L, CHEN M, ZHOU Y, et al. NIR photosensitizer for two-photon fluorescent imaging and photodynamic therapy of tumor[J]. Frontiers in Chemistry,2021:9.
|
[58] |
DENG K, LI C, HUANG S, et al. Recent progress in near infrared light triggered photodynamic therapy[J]. Small, 2017, 13(44): 1702299.
|
[59] |
UCUNCU M, MILLS B, DUNCAN S, et al. Polymyxin-based photosensitizer for the potent and selective killing of Gram-negative bacteria[J]. Chemical Communications,2020,56(26):3757−3760. doi: 10.1039/D0CC00155D
|
[60] |
YANG Z, QIAO Y, LI J, et al. Novel type of water-soluble photosensitizer from Trichoderma reesei for photodynamic inactivation of Gram-positive bacteria[J]. Langmuir,2020,36(44):13227−13235. doi: 10.1021/acs.langmuir.0c02109
|
[61] |
董建成, 葛孝栋, 王清清, 等. 阳离子光敏抗菌型水凝胶的制备及性能表征[J]. 材料工程,2019,47(2):56−61. [DONG J C, GE X D, WANG Q Q, et al. Preparation and property characterization of cationic photo antimicrobial hydrogel[J]. Journal of Materials Engineering,2019,47(2):56−61. doi: 10.11868/j.issn.1001-4381.2017.000588
|
[62] |
BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106−116. doi: 10.1016/j.carbpol.2018.10.006
|
[63] |
EL-MEKAWY R E, ELHADY H A, AL-SHAREEF H F. Highly stretchable, smooth, and biodegradable hydrogel films based on chitosan as safety food packaging[J]. Polymers & Polymer Composites,2021,29(6):563−573.
|
[64] |
BANDYOPADHYAY S, SAHA N, BRODNJAK U V, et al. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries[J]. Food Packaging and Shelf Life,2019,22:100402. doi: 10.1016/j.fpsl.2019.100402
|
[65] |
李瑶瑶, 李喜宏, 邓玉璞, 等. 脐橙新型壳聚糖水凝胶抑菌保鲜研究[J]. 食品工业科技,2013,34(23):328−332. [LI Y Y, LI X H, DENG Y P, et al. Study on the inhibition and preservation of new chitosan hydrogel in Navel orange[J]. Science and Technology of Food Industry,2013,34(23):328−332. doi: 10.13386/j.issn1002-0306.2013.23.063
|
[66] |
YE Y, GUO H, SUN X. Recent progress on cell-based biosensors for analysis of food safety and quality control[J]. Biosensors and Bioelectronics,2019,126:389−404. doi: 10.1016/j.bios.2018.10.039
|
[67] |
LU P, YANG Y, LIU R, et al. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging[J]. Carbohydrate Polymers,2020,249:116831. doi: 10.1016/j.carbpol.2020.116831
|
[68] |
CHENG H, XU H, JULIAN MCCLEMENTS D, et al. Recent advances in intelligent food packaging materials: Principles, preparation and applications[J]. Food Chemistry,2022,375:131738. doi: 10.1016/j.foodchem.2021.131738
|
[69] |
GAIKWAD K K, SINGH S, AJJI A. Moisture absorbers for food packaging applications[J]. Environmental Chemistry Letters,2019,17(2):609−628. doi: 10.1007/s10311-018-0810-z
|
[70] |
EBRAHIMI TIRTASHI F, MORADI M, TAJIK H, et al. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging[J]. International Journal of Biological Macromolecules,2019,136:920−926. doi: 10.1016/j.ijbiomac.2019.06.148
|
[71] |
ZHAO L, ZHANG Z, WANG M, et al. New insights into the changes of the proteome and microbiome of shrimp (Litopenaeus vannamei) stored in acidic electrolyzed water ice[J]. Journal of Agricultural and Food Chemistry,2018,66(19):4966−4976. doi: 10.1021/acs.jafc.8b00498
|
[72] |
ZOU J, WANG L, SUN G. Sustainable and reusable gelatin-based hydrogel "Jelly Ice Cubes" as food coolant. I: Feasibilities and challenges[J]. ACS Sustainable Chemistry & Engineering,2021,9(46):15357−15364.
|
[73] |
ZOU J, SBODIO A O, BLANCO ULATE B, et al. Novel robust, reusable, microbial-resistant, and compostable protein-based cooling media[J]. Advanced Functional Materials,2022:2201347.
|