Issue 10
May. 2023
Turn off MathJax
Article Contents
WANG Yuli, LI Ting, FAN Yuwen, et al. Effect of Potassium Ions on the Properties and Mechanism Analysis of Tamarind Gum/Kappa-Carrageenan Composite Gel[J]. Science and Technology of Food Industry, 2023, 44(10): 78−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070184
Citation: WANG Yuli, LI Ting, FAN Yuwen, et al. Effect of Potassium Ions on the Properties and Mechanism Analysis of Tamarind Gum/Kappa-Carrageenan Composite Gel[J]. Science and Technology of Food Industry, 2023, 44(10): 78−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070184

Effect of Potassium Ions on the Properties and Mechanism Analysis of Tamarind Gum/Kappa-Carrageenan Composite Gel

doi: 10.13386/j.issn1002-0306.2022070184
  • Received Date: 19 Jul 2022
  • Issue Publish Date: 15 May 2023
  • To investigate the effect of K+ on the properties and mechanism of the composite gel system consisting of tamarind gum and κ-carrageenan, four methods including rheology, texture analysis, microstructure, and infrared spectroscopy were used to investigate the properties and structure of the composite gel with different K+ additions. The rheological results showed that the addition of K+ increased the modulus of the gel system and decreased the compliance and total deformation. When the addition of K+ increased to 15 mmol/L, the apparent viscosity reached its highest value of 2690 Pa·s. The results of texture analysis revealed that the strength and hardness of the gel system increased with the addition of K+, but its elasticity and cohesiveness decreased relatively. Infrared spectroscopy and microstructure demonstrated that K+ could promote the interaction between tamarind gum and κ-carrageenan, the gel pores tend to be dense and uniform, and the inter-pore walls were most regular and strong at the K+ addition of 15 mmol/L. The results showed that the addition of K+ could make the gel system exhibit better viscoelasticity and anti-deformation, and make the network structure more compact, which would provide a theoretical reference for the application of tamarind gum and κ-carrageenan in compounding.

     

  • loading
  • [1]
    刘爱国, 王思昕, 樊凯凯, 等. 罗望子胶与常用胶体的复配研究[J]. 食品研究与开发,2013,34(15):17−19. [LIU A G, WANG S X, FAN K K, et al. Study on compound of tamarind gum with common thickening agents[J]. Food Research and Development,2013,34(15):17−19. doi: 10.3969/j.issn.1005-6521.2013.15.005
    [2]
    CHAWANANORASEST K, SAENGTONGDEE P, KAEMCHANTUEK P. Extraction and characterization of tamarind (Tamarind indica L.) seed polysaccharides (TSP) from three difference sources[J]. Molecules,2016,21(6):775. doi: 10.3390/molecules21060775
    [3]
    韩明会, 于海龙, 朱莉伟, 等. 罗望子胶的流变学性质及凝胶特性研究[J]. 中国野生植物资源,2015,34(3):7−11. [HAN M H, YU H L, ZHU L W, et al. Study of rheological properties and gel performance of tamarind gum[J]. Chinese Wild Plant Resources,2015,34(3):7−11. doi: 10.3969/j.issn.1006-9690.2015.03.002
    [4]
    金明良, 覃小丽, 唐小媛, 等. 含罗望子胶的复配胶在牛奶果冻中的应用[J]. 食品与发酵工业,2017,43(10):131−136. [JIN M L, QIN X L, TANG X Y, et al. Preparationof milk jelly using tamarind compound gums[J]. Food and Fermentation Industry,2017,43(10):131−136. doi: 10.13995/j.cnki.11-1802/ts.014207
    [5]
    赵陶磊, 聂彩清, 艾连中, 等. 罗望子多糖的结构、功能及其改性修饰研究进展[J]. 食品与发酵科技,2021,57(6):67−76,82. [ZHAO T L, NIE C Q, AI L Z, et al. Research progress on the structure, function and modification of tamarind seed polysaccharide[J]. Food and Fermentation Science and Technology,2021,57(6):67−76,82. doi: 10.3969/j.issn.1674-506X.2021.06-011
    [6]
    郑瑞峰, 王晓娟, 吴秋艳, 等. 卡拉胶凝胶保水机理及其应用研究[J]. 食品安全导刊,2022(8):186−188. [ZHENG R F, WANG X J, WU Q Y, et al. Study on water retention mechanism of carrageenan gel and its application[J]. Journal of Food Safety,2022(8):186−188. doi: 10.3969/j.issn.1674-0270.2022.8.spaqdk202208065
    [7]
    詹伟, 袁超, 崔波. 抗性糊精对κ-卡拉胶凝胶特性的影响[J]. 食品工业科技,2021,42(9):19−24. [ZHAN W, YUAN C, CUI B. Effect of resistant dextrins on the gel properties of κ-carrageenan[J]. Science and Technology of Food Industry,2021,42(9):19−24.
    [8]
    YUAN C, SANG L Y, WANG Y L, et al. Influence of cyclodextrins on the gel properties of kappa-carrageenan[J]. Food Chemistry,2018,266:545−550. doi: 10.1016/j.foodchem.2018.06.060
    [9]
    SITTICHOKE S, SOOTTAWAT B, YACINE H. Physical and sensory properties of gelatin from seabass (Lates calcarifer) as affected by agar and κ-carrageenan[J]. Journal of Texture Studies,2018,49(1):47−55. doi: 10.1111/jtxs.12280
    [10]
    WEI Y, WANG Y L, HE X J. Gel properties of k-carrageenan-konjac gum mixed gel and their influence factors[J]. Advanced Materials Research,2011,396-398(396-398):1389−1393.
    [11]
    XIE F, ZHANG H, XIA Y J, et al. Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios[J]. Food Hydrocolloids,2020,105:105854. doi: 10.1016/j.foodhyd.2020.105854
    [12]
    ZHANG J H, JIANG L, YANG J, et al. Effect of calcium chloride on heat-induced Mesona chinensis polysaccharide-whey protein isolation gels: Gel properties and interactions[J]. LWT,2022,155:112907. doi: 10.1016/j.lwt.2021.112907
    [13]
    LIN L H, SHEN M Y, LIU S C, et al. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics[J]. International Journal of Biological Macromolecules,2018,107(Pt B):1591−1598.
    [14]
    SHARMA M, MONDAL D, MUKESH C, et al. Preparation of tamarind gum based soft ion gels having thixotropic properties[J]. Carbohydrate Polymers,2014,102:467−471. doi: 10.1016/j.carbpol.2013.11.063
    [15]
    WU D, YU S M, LIANG H S, et al. The influence of deacetylation degree of konjac glucomannan on rheological and gel properties of konjac glucomannan/κ-carrageenan mixed system[J]. Food Hydrocolloids,2020,101(C):105523.
    [16]
    苏一帆, 钱志强, 刘忠. 无机盐对κ-卡拉胶凝胶行为影响的机理[J]. 盐科学与化工,2021,50(8):16−20,33. [SU Y F, QIAN Z Q, LIU Z. Gelation mechanisms of κ-carrageenan in solutionsunder the influence of inorganic salts[J]. Salt Science and Chemistry,2021,50(8):16−20,33. doi: 10.3969/j.issn.2096-3408.2021.08.005
    [17]
    杜徐楠, 陈改亭, 胡猛, 等. 离子对κ-卡拉胶/刺槐豆胶相互作用的影响研究[J]. 食品科技,2020,45(3):230−239. [DU X N, CHEN C T, HU M, et al. Effect of ions on kappa-carrageenan/locust bean gum interaction[J]. Food Science and Technology,2020,45(3):230−239.
    [18]
    樊蕊. 燕麦β-葡聚糖复合凝胶制备技术及其凝胶机理研究[J]. 食品工业科技,2019,40(18):35−40. [FAN R. Preparation technology of β-glucan composite gel and the analysis of gelation mechanism[J]. Science and Technology of Food Industry,2019,40(18):35−40.
    [19]
    WANG W J, JIANG L, REN Y M, et al. Gelling mechanism and interactions of polysaccharides from Mesona blumes: Role of urea and calcium ions[J]. Carbohydrate Polymers,2019,212:270−276. doi: 10.1016/j.carbpol.2019.02.059
    [20]
    WANG N, TIAN J, WANG L L, et al. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization[J]. International Journal of Biological Macromolecules,2021,191:514−520. doi: 10.1016/j.ijbiomac.2021.09.111
    [21]
    任艳艳. κ-卡拉胶/魔芋葡甘聚糖复合水凝胶机械性能强化与表征[D]. 武汉: 华中农业大学, 2020

    REN Y Y. Enhancement and characterization of κ-carrageenan/ konjac glucomannan compound hydrogels[D]. Wuhan: Huazhong Agricultural University, 2020.
    [22]
    江联. 凉粉草多糖-乳清分离蛋白凝胶体系的凝胶特性和凝胶机理的研究及应用[D]. 南昌: 南昌大学, 2020

    JIANG L. Mesona chinensis polysaccharide-whey protein isolate gel system: Gel properties, mechanism and its application[D]. Nanchang: Nanchang University, 2020.
    [23]
    EVAGELIOU V I, RYAN P M, MORRIS E R. Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan[J]. Food Hydrocolloids,2018,86:141−145.
    [24]
    WANG Y L, YUAN C, CUI B, et al. Influence of cations on texture, compressive elastic modulus, sol-gel transition and freeze-thaw properties of kappa-carrageenan gel[J]. Carbohydrate Polymers,2018,202:530−535. doi: 10.1016/j.carbpol.2018.08.146
    [25]
    ALPIZAR-REYES E, CARRILLO-NAVAS H, GALLARDO-RIVERA R, et al. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid[J]. Journal of Food Engineering,2017,209:68−75. doi: 10.1016/j.jfoodeng.2017.04.021
    [26]
    刘孝平, 邹雨珂, 刘路, 等. 不同品种罗望子果肉和种子多糖结构及抗氧化活性比较[J]. 南方农业学报,2019,50(8):1807−1813. [LIU X P, ZOU Y K, LIU L, et al. Comparison of structure and antioxidant activity of fruit and seed polysaccharides from different varieties of tamarind[J]. Southern Journal of Agriculture,2019,50(8):1807−1813. doi: 10.3969/j.issn.2095-1191.2019.08.22
    [27]
    卞紫秀, 董增, 张旭, 等. 海藻酸钠与卡拉胶复合膜的制备及性能[J]. 塑料工业,2018,46(9):39−43. [BIAN Z X, DONG Z, ZHANG X, et al. Preparation and performances of sodium alginate/carrageenan composite packaging filmm[J]. Plastics Industry,2018,46(9):39−43. doi: 10.3969/j.issn.1005-5770.2018.09.010
    [28]
    WEBBER V, CARVALHO S M D, OGLIARI P J, et al. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology[J]. Food Science and Technology,2012,32(4):812−818. doi: 10.1590/S0101-20612012005000111
    [29]
    RASOOL A, ATA S, ISLAM A, et al. Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels[J]. International Journal of Biological Macromolecules,2020,147:67−78. doi: 10.1016/j.ijbiomac.2020.01.073
    [30]
    MAKSHAKOVA O N, FAIZULLIN D A, ZUEV Y F. Interplay between secondary structure and ion binding upon thermoreversible gelation of κ-carrageenan[J]. Carbohydrate Polymers,2020,227(C):115342.
  • 加载中

Catalog

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(32) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return