Citation: | LIU Siqi, FENG Guohong, LIU Zhongshen, et al. An Anthocyanin Prediction Model of Blueberry Pomace Based on Stacked Supervised Autoencoders[J]. Science and Technology of Food Industry, 2023, 44(10): 304−310. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070227 |
[1] |
高明明, 肖月欢, 王幸, 等. 我国蓝莓食品加工现状分析[J]. 保鲜与加工,2017,17(3):111−117. [GAO Mingming, XIAO Yuehuan, WANG Xing, et al. Analysis on the status quo of blueberry food processing in my country[J]. Storage and Process,2017,17(3):111−117. doi: 10.3969/j.issn.1009-6221.2017.03.021
|
[2] |
张昌容, 李志, 何永福, 等. 蓝莓果渣主要功能性成分及综合利用研究进展[J]. 食品科技,2021,46(6):110−111. [ZHANG Changrong, LI Zhi, HE Yongzhi, et al. Research progress on main functional components and comprehensive utilization of blueberry pomace[J]. Food Science and Technology,2021,46(6):110−111. doi: 10.13684/j.cnki.spkj.2021.06.019
|
[3] |
韩鹏祥, 张蓓, 冯叙桥, 等. 蓝莓的营养保健功能及其开发利用[J]. 食品工业科技,2015,36(6):370−375,379. [HAN Pengxiang, ZHANG Pei, FENG Xuqiao, et al. Nutrition and health care function of blueberry and its development and utilization[J]. Science and Technology of Food Industry,2015,36(6):370−375,379.
|
[4] |
雷良波, 杨浩, 陈军李, 等. 蓝莓果渣开发利用研究进展[J]. 中国酿造,2017,36(10):17−22. [LEI Liangbo, YANG Hao, CHEN Junjie, et al. Research progress on development and utilization of blueberry pomace[J]. China Brewing,2017,36(10):17−22. doi: 10.11882/j.issn.0254-5071.2017.10.005
|
[5] |
JIE D F, XIE L J, FU X P, et al. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique[J]. Journal of Food Engineering,2013,118(4):387−392. doi: 10.1016/j.jfoodeng.2013.04.027
|
[6] |
JUAN F, TERESA G, JAVIER T, et al. Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening[J]. Talanta,2019,199:244−253. doi: 10.1016/j.talanta.2019.02.037
|
[7] |
彭发, 王震, 刘双喜, 等. 基于偏最小二乘法和深度学习的近红外糖度预测[J]. 吉林农业大学学报,2021,43(2):196−204. [PENG Fa, WANG Zhen, LIU Shuangxi, et al. Near-infrared sugar content prediction based on partial least squares and deep learning[J]. Journal of Jilin Agricultural University,2021,43(2):196−204. doi: 10.13327/j.jjlau.2021.6116
|
[8] |
张娟, 原帅, 张骏. 基于小波变换-遗传算法-偏最小二乘的草莓糖度检测研究[J]. 分析科学学报,2020,36(1):111−115. [ZHANG Juan, YUAN Shuai, ZHANG Jun. Research on brix detection of strawberry based on wavelet transform-genetic algorithm-partial least square[J]. Journal of Analytical Science,2020,36(1):111−115.
|
[9] |
ALI M T, ABBAS A, NILOOFAR L N. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR)[J]. Journal of Integrative Agriculture,2017,16(7):1634−1644. doi: 10.1016/S2095-3119(16)61546-0
|
[10] |
刘小路, 薛璐, 鲁晓翔, 等. 近红外光谱技术快速无损检测蓝莓总黄酮、花青素的研究[J]. 食品工业科技,2015,36(16):58−61, 67. [LIU Xiaolu, XUE Lu, LU Xiaoxiang, et al. Research on rapid non-destructive detection of total flavonoids and anthocyanins in blueberry by near-infrared spectroscopy[J]. Science and Technology of Food Industry,2015,36(16):58−61, 67.
|
[11] |
ZHENG W, BAI Y H, LUO H, et al. Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics[J]. Postharvest Biology and Technology,2020,169:111286. doi: 10.1016/j.postharvbio.2020.111286
|
[12] |
薛璐, 刘小路, 鲁晓翔, 等. 近红外漫反射无损检测蓝莓硬度的研究[J]. 浙江农业学报,2015,27(9):1646−1651. [XUE Lu, LIU Xiaolu, LU Xiaoxiang, et al. Non-destructive testing of blueberry firmness by near-infrared diffuse reflectance[J]. Acta Agriculture Zhejiangensis,2015,27(9):1646−1651. doi: 10.3969/j.issn.1004-1524.2015.09.25
|
[13] |
张丽娟, 夏其乐, 陈剑兵, 等. 近红外光谱的三种蓝莓果渣花色苷含量测定[J]. 光谱学与光谱分析,2020,40(7):2246−2252. [ZHANG Lijuan, XIA Qile, CHEN Jianbing, et al. Determination of anthocyanins in three kinds of blueberry pomace by near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(7):2246−2252.
|
[14] |
ANDREAS K, FRANCESC X, PRENAFETA-BOLDU. Deep learning in agriculture: A survey[J]. Computers and Electronics in Agriculture,2018,147:70−90. doi: 10.1016/j.compag.2018.02.016
|
[15] |
王璨, 武新慧, 李恋卿, 等. 卷积神经网络用于近红外光谱预测土壤含水率[J]. 光谱学与光谱分析,2018,38(1):36−41. [WANG Can, WU Xinhui, Li Lianqin, et al. Convolutional neural networks for predicting soil moisture content by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(1):36−41.
|
[16] |
LIU J, ZHANG J X, TAN Z L, et al. Detecting the content of the bright blue pigment in cream based on deep learning and near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2022,270:120757. doi: 10.1016/j.saa.2021.120757
|
[17] |
DONG X, QUOCHUY V, BATUAN L. Salt content in saline-alkali soil detection using visible-near infrared spectroscopy and a 2D deep learning[J]. Microchemical Journal,2021,165:106182. doi: 10.1016/j.microc.2021.106182
|
[18] |
孙志兴, 赵忠盖, 刘飞. 堆叠监督自动编码器的近红外光谱建模[J]. 光谱学与光谱分析,2022,42(3):749−756. [SUN Zhixing, ZHAO Zhonggai, LIU Fei. Near-infrared spectral modeling of stacked supervised autoencoders[J]. Spectroscopy and Spectral Analysis,2022,42(3):749−756. doi: 10.3964/j.issn.1000-0593(2022)03-0749-08
|
[19] |
LI L, ANDREW P, MARTHA W. Supervised autoencoders: Improving generalization performance with unsupervised regularizers[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18), Red Hook, NY, USA: Curran Associates Inc. 2018: 107–117.
|
[20] |
赵尔丰, 高畅, 高欣, 等. 酶-超声波辅助提取蓝莓果渣中花青素的工艺研究[J]. 东北农业大学学报,2010,41(4):98−103. [ZHAO Erfeng, GAO Chang, GAO Xin, et al. Study on the technology of enzyme-ultrasonic-assisted extraction of anthocyanins from blueberry pomace[J]. Journal of Northeast Agricultural University,2010,41(4):98−103. doi: 10.3969/j.issn.1005-9369.2010.04.021
|
[21] |
刘仁道, 张猛, 李新贤. 草莓和蓝莓果实花青素提取及定量方法的比较[J]. 园艺学报,2008(5):655−660. [LIU Rendao, ZHANG Meng, LI Xinxian. Comparison of extraction and quantitative methods of anthocyanins from strawberry and blueberry fruits[J]. Acta Horticulturae Sinica,2008(5):655−660. doi: 10.16420/j.issn.0513-353x.2008.05.013
|
[22] |
第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,39(9):2800−2806. [DI Wupengyao, BIAN Xihui, WANG Zifang, et al. Study on the selection of spectral preprocessing method[J]. Spectroscopy and Spectral Analysis,2019,39(9):2800−2806.
|
[23] |
张建勇, 高冉, 胡骏, 等. 灰色关联度和Pearson相关系数的应用比较[J]. 赤峰学院学报(自然科学版),2014,30(21):1−2. [ZHANG Jianyong, GAO Ran, HU Jun, et al. Application comparison of grey correlation degree and Pearson correlation coefficient[J]. Journal of Chifeng University (Natural Science Edition),2014,30(21):1−2. doi: 10.3969/j.issn.1673-260X.2014.21.001
|
[24] |
罗一甲, 祝赫, 李潇涵, 等. 赤霞珠酿酒葡萄总酚含量的近红外光谱定量分析[J]. 光谱学与光谱分析,2021,41(7):2036−2042. [LUO Yijia, ZHU He, LI Xiaohan, et al. Quantitative analysis of total phenolic content in Cabernet Sauvignon wine grapes by near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(7):2036−2042.
|
[25] |
LIN C, CHEN X, JIAN L, et al. Determination of grain protein content by near-infrared spectrometry and multivariate calibration in barley[J]. Food Chemistry,2014,162:10−15. doi: 10.1016/j.foodchem.2014.04.056
|