Issue 9
May. 2023
Turn off MathJax
Article Contents
LÜ Tianfeng, SONG Xinjie, WU Li, et al. Progress in Optical and Electrochemical Sensors for Detection of Quinolone Antibiotics in Food[J]. Science and Technology of Food Industry, 2023, 44(9): 465−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070231
Citation: LÜ Tianfeng, SONG Xinjie, WU Li, et al. Progress in Optical and Electrochemical Sensors for Detection of Quinolone Antibiotics in Food[J]. Science and Technology of Food Industry, 2023, 44(9): 465−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070231

Progress in Optical and Electrochemical Sensors for Detection of Quinolone Antibiotics in Food

doi: 10.13386/j.issn1002-0306.2022070231
  • Received Date: 20 Jul 2022
  • Issue Publish Date: 01 May 2023
  • Quinolone antibiotic residues present a high risk for food safety and have gained widespread attention. Nanomaterials based sensors have the advantages of on-site application, sensitivity, and small sample volume requirement and has attracted significant interest in on-site detection technology research for quinolone antibiotics. This paper introduces the application of optical sensors including fluorescence, colorimetry, SERS, ICA and electrochemical sensors based on diverse nanomaterials in quinolone antibiotics detection and summarizes the characteristics of diverse sensors. The application of nanomaterials including quantum dots and upconversion in optical sensors, as well as those of carbon and metal nanomaterials and redox media in electrochemical sensors are reviewed and evaluated. The objective of this work is to provide new concepts for antibiotics detection in food and the development of sensors.

     

  • loading
  • [1]
    BISACCHI G S. Origins of the quinolone class of antibacterials: An expanded "discovery story"[J]. Journal of Medicinal Chemistry,2015,58(12):4874−4882. doi: 10.1021/jm501881c
    [2]
    ANDERSSON M I, MACGOWAN A P. Development of the quinolones[J]. Journal of Antimicrobial Chemotherapy,2003,51(suppl_1):1−11.
    [3]
    TANG H Z, WANG Y H, LI S, et al. Graphene oxide composites for magnetic solid-phase extraction of twelve quinolones in water samples followed by MALDI-TOF MS[J]. Analytical and Bioanalytical Chemistry,2019,411(26):7039−7049. doi: 10.1007/s00216-019-02081-w
    [4]
    卢金连, 杜明慧, 潘运安, 等. 有机蔬菜中喹诺酮类抗生素污染特征与风险评价[J]. 环境科学与技术,2021,44(3):209−217. [LU Jinlian, DU Minghui, PAN Yunan, et al. Pollution characteristics and risk assessment of quinolone antibiotics in organic vegetables[J]. Environmental Science and Technology,2021,44(3):209−217. doi: 10.19672/j.cnki.1003-6504.2021.03.027
    [5]
    林功师. 市售鱼类喹诺酮类药物残留调查[J]. 水产养殖,2022,43(5):32−35. [LING Gongshi. Survey of quinolones residues in fishes in the retailer[J]. Journal of Aquaculture,2022,43(5):32−35. doi: 10.3969/j.issn.1004-2091.2022.05.008
    [6]
    BARBOSA TORRALBO J, BARRÓN BUENO D, HERMO OUTEIRAL M, et al. Determination and characterization of quinolones in foodstuffs of animal origin by CE-UV, LC-UV, LC-Fl, LC-MS and LC-MS/MS[J]. Ovidius University Annals of Chemistry,2009,20(2):165−179.
    [7]
    SAMANIDOU V, DEMETRIOU C, PAPADOYANNIS I. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC[J]. Analytical and Bioanalytical Chemistry,2003,375(5):623−629. doi: 10.1007/s00216-003-1749-9
    [8]
    JIANG W, WANG Z, BEIER R C, et al. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay[J]. Analytical Chemistry,2013,85(4):1995−1999. doi: 10.1021/ac303606h
    [9]
    HAN R W, ZHENG N, WANG J Q, et al. Survey of tetracyclines, sulfonamides, sulfamethazine, and quinolones in UHT milk in china market[J]. Journal of Integrative Agriculture,2013,12(7):1300−1305. doi: 10.1016/S2095-3119(13)60433-5
    [10]
    JINQING J, HAITANG Z, JUNWEI L, et al. Development and optimization of an indirect competitive ELISA for detection of norfloxacin residue in chicken liver[J]. Procedia Environmental Sciences,2011,8:128−133. doi: 10.1016/j.proenv.2011.10.021
    [11]
    HERRERA-HERRERA A V, HERNáNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters[J]. Electrophoresis,2010,31(20):3457−3465. doi: 10.1002/elps.201000285
    [12]
    WANG Y, BAEYENS W R G, HUANG C, et al. Enhanced separation of seven quinolones by capillary electrophoresis with silica nanoparticles as additive[J]. Talanta,2009,77(5):1667−1674. doi: 10.1016/j.talanta.2008.10.002
    [13]
    MORENO-GONZÁLEZ D, LARA F J, GÁMIZ-GRACIA L, et al. Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples[J]. Journal of Chromatography A,2014,1360:1−8. doi: 10.1016/j.chroma.2014.07.049
    [14]
    DAWADI S, THAPA R, MODI B, et al. Technological advancements for the detection of antibiotics in food products[J]. Processes,2021,9(9):1500. doi: 10.3390/pr9091500
    [15]
    MAJDINASAB M, YAQUB M, RAHIM A, et al. An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food[J]. Sensors (Basel),2017,17(9):1947. doi: 10.3390/s17091947
    [16]
    MADURAIVEERAN G, JIN W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications[J]. Trends in Environmental Analytical Chemistry,2017,13:10−23. doi: 10.1016/j.teac.2017.02.001
    [17]
    MAJDINASAB M, MITSUBAYASHI K, MARTY J L. Optical and electrochemical sensors and biosensors for the detection of quinolones[J]. Trends Biotechnol,2019,37(8):898−915. doi: 10.1016/j.tibtech.2019.01.004
    [18]
    HOLZINGER M, LE GOFF A, COSNIER S. Synergetic effects of combined nanomaterials for biosensing applications[J]. Sensors (Basel),2017,17(5):1010. doi: 10.3390/s17051010
    [19]
    ZHANG R, BELWAL T, LI L, et al. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1465−1487. doi: 10.1111/1541-4337.12576
    [20]
    SADEGHI A S, ANSARI N, RAMEZANI M, et al. Optical and electrochemical aptasensors for the detection of amphenicols[J]. Biosens Bioelectron,2018,118:137−152. doi: 10.1016/j.bios.2018.07.045
    [21]
    RENUKA R M, MAROLI N, ACHUTH J, et al. Highly adaptable and sensitive FRET-based aptamer assay for the detection of Salmonella paratyphi A[J]. Spectrochim Acta Part A:Molecular and Biomolecular Spectroscopy,2020,243:118662. doi: 10.1016/j.saa.2020.118662
    [22]
    XIA H, PENG M, LI N, et al. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection[J]. Chemical Physics Letters,2020,740:137085. doi: 10.1016/j.cplett.2019.137085
    [23]
    TAN X, LI Q, YANG J. A simple fluorescence method detection levofloxacin in milk based on GSH-CdTe QDs[J]. Journal of Molecular Structure,2020,1201:127175. doi: 10.1016/j.molstruc.2019.127175
    [24]
    SUANCHAN K, CHANSUD N, SA-NGUANPRANG S, et al. A nanocomposite optosensing probe based on hierarchical porous carbon and graphene quantum dots incorporated in selective polymer for the detection of trace ofloxacin[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:127376. doi: 10.1016/j.colsurfa.2021.127376
    [25]
    RONG Y, HASSAN M M, OUYANG Q, et al. Lanthanide ion (Ln(3+))-based upconversion sensor for quantification of food contaminants: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3531−3578. doi: 10.1111/1541-4337.12765
    [26]
    ZHANG Y, DUAN B, BAO Q, et al. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics[J]. Journal of Materials Chemistry B,2020,8(37):8607−8613. doi: 10.1039/D0TB01441A
    [27]
    HU G, SHENG W, ZHANG Y, et al. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels[J]. Analytical and Bioanalytical Chemistry,2015,407(28):8487−8496. doi: 10.1007/s00216-015-8996-4
    [28]
    ZHANG Z, ZHANG M, WU X Y, et al. Upconversion fluorescence resonance energy transfer-A novel approach for sensitive detection of fluoroquinolones in water samples[J]. Microchemical Journal,2016,124:181−187. doi: 10.1016/j.microc.2015.08.024
    [29]
    LIU X, SU L, ZHU L, et al. Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes[J]. Sensors and Actuators B:Chemical,2016,233:394−401. doi: 10.1016/j.snb.2016.04.096
    [30]
    ZHOU X, WANG L, SHEN G, et al. Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles[J]. Mikrochim Acta,2018,185(7):355. doi: 10.1007/s00604-018-2895-2
    [31]
    LAVAEE P, DANESH N M, RAMEZANI M, et al. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles[J]. Microchimica Acta,2017,184(7):2039−2045. doi: 10.1007/s00604-017-2213-4
    [32]
    SUN M, HE M, JIANG S, et al. Multi-enzyme activity of three layers FeOx@ZnMnFeOy@Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone[J]. Chemical Engineering Journal,2021,425:131823. doi: 10.1016/j.cej.2021.131823
    [33]
    REN S, LI Q, WANG J, et al. Development of a fast and ultrasensitive black phosphorus-based colorimetric/photothermal dual-readout immunochromatography for determination of norfloxacin in tap water and river water[J]. Journal of Hazardous Materials,2021,402:123781. doi: 10.1016/j.jhazmat.2020.123781
    [34]
    REZENDE J D P, PACHECO A F C, MAGALHÃES O F, et al. Polydiacetylene/triblock copolymer/surfactant nanoblend: A simple and rapid method for the colorimetric screening of enrofloxacin residue[J]. Food Chemistry,2019,280:1−7. doi: 10.1016/j.foodchem.2018.12.033
    [35]
    SHARMA B, FRONTIERA R R, HENRY A I, et al. SERS: Materials, applications, and the future[J]. Materials Today,2012,15(1−2):16−25. doi: 10.1016/S1369-7021(12)70017-2
    [36]
    LIANG J F, PENG C, LI P, et al. A review of detection of antibiotic residues in food by surface-enhanced Raman spectroscopy[J]. Bioinorg Chemistry and Applications,2021,2021:8180154.
    [37]
    SHI Q, HUANG J, SUN Y, et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J]. Microchimica Acta,2018,185(2):84. doi: 10.1007/s00604-017-2556-x
    [38]
    LIU J, LIU W, ZHOU S N, et al. Free-standing membrane liquid-state platform for SERS-based determination of norfloxacin in environmental samples[J]. Journal of Analysis and Testing,2021,5(3):217−224. doi: 10.1007/s41664-021-00192-x
    [39]
    LI N, HAN S, LIN S, et al. Fabrication of an AAO-based surface-enhanced Raman scattering substrate for the identification of levofloxacin in milk[J]. New Journal of Chemistry,2021,45(17):7571−7577. doi: 10.1039/D1NJ00642H
    [40]
    HAIPING L, JIANGYUE W, FANPING M, et al. Immunochromatographic assay for the detection of antibiotics in animal-derived foods: A review[J]. Food Control,2021,130:108356. doi: 10.1016/j.foodcont.2021.108356
    [41]
    PENG J, LIU L, XU L, et al. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro) quinolones by one monoclonal antibody[J]. Nano Research,2017,10(1):108−120. doi: 10.1007/s12274-016-1270-z
    [42]
    OLIVEIRA C P D, SOARES N D F F, TEIXEIRA A V N D C, et al. Gold nanoparticle-based paper sensor for highly specific detection of ofloxacin in beef[J]. Journal of Food Chemistry & Nanotechnology,2019,05(04):72−78.
    [43]
    LIU J, WANG B, HUANG H, et al. Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips[J]. Food Chemistry,2021,335:127596. doi: 10.1016/j.foodchem.2020.127596
    [44]
    HU G, GAO S, HAN X, et al. Comparison of immunochromatographic strips using colloidal gold, quantum dots, and upconversion nanoparticles for visual detection of norfloxacin in milk samples[J]. Food Analytical Methods,2020,13(5):1069−1077. doi: 10.1007/s12161-020-01725-3
    [45]
    XIAO J, LIU M, TIAN F, et al. Stable europium-based metal-organic frameworks for naked-eye ultrasensitive detecting fluoroquinolones antibiotics[J]. Inorganic Chemistry,2021,60(7):5282−5289. doi: 10.1021/acs.inorgchem.1c00263
    [46]
    TENG P, GAO D, YANG X, et al. In situ SERS detection of quinolone antibiotic residues in a water environment based on optofluidic in-fiber integrated Ag nanoparticles[J]. Applied Optics,2021,60(22):6659−6664. doi: 10.1364/AO.426611
    [47]
    TIAN Y, LI G, ZHANG H, et al. Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules[J]. Optics Express,2018,26(18):23347−23358. doi: 10.1364/OE.26.023347
    [48]
    NGUYEN L D, HUYNH T M, NGUYEN T S V, et al. Nafion/platinum modified electrode-on-chip for the electrochemical detection of trace iron in natural water[J]. Journal of Electroanalytical Chemistry,2020,873:114396. doi: 10.1016/j.jelechem.2020.114396
    [49]
    WANG Q, XUE Q, CHEN T, et al. Recent advances in electrochemical sensors for antibiotics and their applications[J]. Chinese Chemical Letters,2021,32(2):609−619. doi: 10.1016/j.cclet.2020.10.025
    [50]
    HU X, GOUD K Y, KUMAR V S, et al. Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin[J]. Sensors and Actuators B:Chemical,2018,268(1):278−286.
    [51]
    SINGH V, KUSS S. Pico-molar electrochemical detection of ciprofloxacin at composite electrodes[J]. Analyst,2022,147(16):3773−3782. doi: 10.1039/D2AN00645F
    [52]
    SADAT KHALOO S, MOZAFFARI S, BAREKAT A, et al. Fabrication of a modified electrode based on multi-walled carbon nanotubes decorated with iron oxide nanoparticles for the determination of enrofloxacin[J]. Micro & Nano Letters,2015,10(10):561−566.
    [53]
    LÜ L, ZHANG B, TIAN P, et al. A “signal off” aptasensor based on AuNPs/Ni-MOF substrate-free catalyzed for detection enrofloxacin[J]. Journal of Electroanalytical Chemistry,2022,911:116251. doi: 10.1016/j.jelechem.2022.116251
    [54]
    GISSAWONG N, SRIJARANAI S, BOONCHIANGMA S, et al. An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent[J]. Microchimica Acta,2021,188(6):208. doi: 10.1007/s00604-021-04869-z
    [55]
    PILEHVAR S, REINEMANN C, BOTTARI F, et al. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin[J]. Sensors and Actuators B:Chemical,2017,240:1024−1035. doi: 10.1016/j.snb.2016.09.075
    [56]
    AYMARD C, KANSO H, SERRANO M J, et al. Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples[J]. Food Chemistry,2022,370:131016. doi: 10.1016/j.foodchem.2021.131016
    [57]
    TAGHDISI HEIDARIAN S M, TAVANAEE SANI A, DANESH N M, et al. A novel electrochemical approach for the ultrasensitive detection of fluoroquinolones based on a double-labelled aptamer to surpass complementary strands of aptamer lying flat[J]. Sensors and Actuators B:Chemical,2021,334:129632. doi: 10.1016/j.snb.2021.129632
    [58]
    DE SOUZA C C, ALVES G F, LISBOA T P, et al. Low-cost paper-based electrochemical sensor for the detection of ciprofloxacin in honey and milk samples[J]. Journal of Food Composition and Analysis,2022,112:104700. doi: 10.1016/j.jfca.2022.104700
    [59]
    KERGARAVAT S V, ROMERO N, REGALDO L, et al. Simultaneous electrochemical detection of ciprofloxacin and Ag(I) in a silver nanoparticle dissolution: Application to ecotoxicological acute studies[J]. Microchemical Journal,2021,162:105832. doi: 10.1016/j.microc.2020.105832
  • 加载中

Catalog

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return