Citation: | LÜ Tianfeng, SONG Xinjie, WU Li, et al. Progress in Optical and Electrochemical Sensors for Detection of Quinolone Antibiotics in Food[J]. Science and Technology of Food Industry, 2023, 44(9): 465−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070231 |
[1] |
BISACCHI G S. Origins of the quinolone class of antibacterials: An expanded "discovery story"[J]. Journal of Medicinal Chemistry,2015,58(12):4874−4882. doi: 10.1021/jm501881c
|
[2] |
ANDERSSON M I, MACGOWAN A P. Development of the quinolones[J]. Journal of Antimicrobial Chemotherapy,2003,51(suppl_1):1−11.
|
[3] |
TANG H Z, WANG Y H, LI S, et al. Graphene oxide composites for magnetic solid-phase extraction of twelve quinolones in water samples followed by MALDI-TOF MS[J]. Analytical and Bioanalytical Chemistry,2019,411(26):7039−7049. doi: 10.1007/s00216-019-02081-w
|
[4] |
卢金连, 杜明慧, 潘运安, 等. 有机蔬菜中喹诺酮类抗生素污染特征与风险评价[J]. 环境科学与技术,2021,44(3):209−217. [LU Jinlian, DU Minghui, PAN Yunan, et al. Pollution characteristics and risk assessment of quinolone antibiotics in organic vegetables[J]. Environmental Science and Technology,2021,44(3):209−217. doi: 10.19672/j.cnki.1003-6504.2021.03.027
|
[5] |
林功师. 市售鱼类喹诺酮类药物残留调查[J]. 水产养殖,2022,43(5):32−35. [LING Gongshi. Survey of quinolones residues in fishes in the retailer[J]. Journal of Aquaculture,2022,43(5):32−35. doi: 10.3969/j.issn.1004-2091.2022.05.008
|
[6] |
BARBOSA TORRALBO J, BARRÓN BUENO D, HERMO OUTEIRAL M, et al. Determination and characterization of quinolones in foodstuffs of animal origin by CE-UV, LC-UV, LC-Fl, LC-MS and LC-MS/MS[J]. Ovidius University Annals of Chemistry,2009,20(2):165−179.
|
[7] |
SAMANIDOU V, DEMETRIOU C, PAPADOYANNIS I. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC[J]. Analytical and Bioanalytical Chemistry,2003,375(5):623−629. doi: 10.1007/s00216-003-1749-9
|
[8] |
JIANG W, WANG Z, BEIER R C, et al. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay[J]. Analytical Chemistry,2013,85(4):1995−1999. doi: 10.1021/ac303606h
|
[9] |
HAN R W, ZHENG N, WANG J Q, et al. Survey of tetracyclines, sulfonamides, sulfamethazine, and quinolones in UHT milk in china market[J]. Journal of Integrative Agriculture,2013,12(7):1300−1305. doi: 10.1016/S2095-3119(13)60433-5
|
[10] |
JINQING J, HAITANG Z, JUNWEI L, et al. Development and optimization of an indirect competitive ELISA for detection of norfloxacin residue in chicken liver[J]. Procedia Environmental Sciences,2011,8:128−133. doi: 10.1016/j.proenv.2011.10.021
|
[11] |
HERRERA-HERRERA A V, HERNáNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters[J]. Electrophoresis,2010,31(20):3457−3465. doi: 10.1002/elps.201000285
|
[12] |
WANG Y, BAEYENS W R G, HUANG C, et al. Enhanced separation of seven quinolones by capillary electrophoresis with silica nanoparticles as additive[J]. Talanta,2009,77(5):1667−1674. doi: 10.1016/j.talanta.2008.10.002
|
[13] |
MORENO-GONZÁLEZ D, LARA F J, GÁMIZ-GRACIA L, et al. Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples[J]. Journal of Chromatography A,2014,1360:1−8. doi: 10.1016/j.chroma.2014.07.049
|
[14] |
DAWADI S, THAPA R, MODI B, et al. Technological advancements for the detection of antibiotics in food products[J]. Processes,2021,9(9):1500. doi: 10.3390/pr9091500
|
[15] |
MAJDINASAB M, YAQUB M, RAHIM A, et al. An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food[J]. Sensors (Basel),2017,17(9):1947. doi: 10.3390/s17091947
|
[16] |
MADURAIVEERAN G, JIN W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications[J]. Trends in Environmental Analytical Chemistry,2017,13:10−23. doi: 10.1016/j.teac.2017.02.001
|
[17] |
MAJDINASAB M, MITSUBAYASHI K, MARTY J L. Optical and electrochemical sensors and biosensors for the detection of quinolones[J]. Trends Biotechnol,2019,37(8):898−915. doi: 10.1016/j.tibtech.2019.01.004
|
[18] |
HOLZINGER M, LE GOFF A, COSNIER S. Synergetic effects of combined nanomaterials for biosensing applications[J]. Sensors (Basel),2017,17(5):1010. doi: 10.3390/s17051010
|
[19] |
ZHANG R, BELWAL T, LI L, et al. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1465−1487. doi: 10.1111/1541-4337.12576
|
[20] |
SADEGHI A S, ANSARI N, RAMEZANI M, et al. Optical and electrochemical aptasensors for the detection of amphenicols[J]. Biosens Bioelectron,2018,118:137−152. doi: 10.1016/j.bios.2018.07.045
|
[21] |
RENUKA R M, MAROLI N, ACHUTH J, et al. Highly adaptable and sensitive FRET-based aptamer assay for the detection of Salmonella paratyphi A[J]. Spectrochim Acta Part A:Molecular and Biomolecular Spectroscopy,2020,243:118662. doi: 10.1016/j.saa.2020.118662
|
[22] |
XIA H, PENG M, LI N, et al. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection[J]. Chemical Physics Letters,2020,740:137085. doi: 10.1016/j.cplett.2019.137085
|
[23] |
TAN X, LI Q, YANG J. A simple fluorescence method detection levofloxacin in milk based on GSH-CdTe QDs[J]. Journal of Molecular Structure,2020,1201:127175. doi: 10.1016/j.molstruc.2019.127175
|
[24] |
SUANCHAN K, CHANSUD N, SA-NGUANPRANG S, et al. A nanocomposite optosensing probe based on hierarchical porous carbon and graphene quantum dots incorporated in selective polymer for the detection of trace ofloxacin[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:127376. doi: 10.1016/j.colsurfa.2021.127376
|
[25] |
RONG Y, HASSAN M M, OUYANG Q, et al. Lanthanide ion (Ln(3+))-based upconversion sensor for quantification of food contaminants: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3531−3578. doi: 10.1111/1541-4337.12765
|
[26] |
ZHANG Y, DUAN B, BAO Q, et al. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics[J]. Journal of Materials Chemistry B,2020,8(37):8607−8613. doi: 10.1039/D0TB01441A
|
[27] |
HU G, SHENG W, ZHANG Y, et al. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels[J]. Analytical and Bioanalytical Chemistry,2015,407(28):8487−8496. doi: 10.1007/s00216-015-8996-4
|
[28] |
ZHANG Z, ZHANG M, WU X Y, et al. Upconversion fluorescence resonance energy transfer-A novel approach for sensitive detection of fluoroquinolones in water samples[J]. Microchemical Journal,2016,124:181−187. doi: 10.1016/j.microc.2015.08.024
|
[29] |
LIU X, SU L, ZHU L, et al. Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes[J]. Sensors and Actuators B:Chemical,2016,233:394−401. doi: 10.1016/j.snb.2016.04.096
|
[30] |
ZHOU X, WANG L, SHEN G, et al. Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles[J]. Mikrochim Acta,2018,185(7):355. doi: 10.1007/s00604-018-2895-2
|
[31] |
LAVAEE P, DANESH N M, RAMEZANI M, et al. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles[J]. Microchimica Acta,2017,184(7):2039−2045. doi: 10.1007/s00604-017-2213-4
|
[32] |
SUN M, HE M, JIANG S, et al. Multi-enzyme activity of three layers FeOx@ZnMnFeOy@Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone[J]. Chemical Engineering Journal,2021,425:131823. doi: 10.1016/j.cej.2021.131823
|
[33] |
REN S, LI Q, WANG J, et al. Development of a fast and ultrasensitive black phosphorus-based colorimetric/photothermal dual-readout immunochromatography for determination of norfloxacin in tap water and river water[J]. Journal of Hazardous Materials,2021,402:123781. doi: 10.1016/j.jhazmat.2020.123781
|
[34] |
REZENDE J D P, PACHECO A F C, MAGALHÃES O F, et al. Polydiacetylene/triblock copolymer/surfactant nanoblend: A simple and rapid method for the colorimetric screening of enrofloxacin residue[J]. Food Chemistry,2019,280:1−7. doi: 10.1016/j.foodchem.2018.12.033
|
[35] |
SHARMA B, FRONTIERA R R, HENRY A I, et al. SERS: Materials, applications, and the future[J]. Materials Today,2012,15(1−2):16−25. doi: 10.1016/S1369-7021(12)70017-2
|
[36] |
LIANG J F, PENG C, LI P, et al. A review of detection of antibiotic residues in food by surface-enhanced Raman spectroscopy[J]. Bioinorg Chemistry and Applications,2021,2021:8180154.
|
[37] |
SHI Q, HUANG J, SUN Y, et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J]. Microchimica Acta,2018,185(2):84. doi: 10.1007/s00604-017-2556-x
|
[38] |
LIU J, LIU W, ZHOU S N, et al. Free-standing membrane liquid-state platform for SERS-based determination of norfloxacin in environmental samples[J]. Journal of Analysis and Testing,2021,5(3):217−224. doi: 10.1007/s41664-021-00192-x
|
[39] |
LI N, HAN S, LIN S, et al. Fabrication of an AAO-based surface-enhanced Raman scattering substrate for the identification of levofloxacin in milk[J]. New Journal of Chemistry,2021,45(17):7571−7577. doi: 10.1039/D1NJ00642H
|
[40] |
HAIPING L, JIANGYUE W, FANPING M, et al. Immunochromatographic assay for the detection of antibiotics in animal-derived foods: A review[J]. Food Control,2021,130:108356. doi: 10.1016/j.foodcont.2021.108356
|
[41] |
PENG J, LIU L, XU L, et al. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro) quinolones by one monoclonal antibody[J]. Nano Research,2017,10(1):108−120. doi: 10.1007/s12274-016-1270-z
|
[42] |
OLIVEIRA C P D, SOARES N D F F, TEIXEIRA A V N D C, et al. Gold nanoparticle-based paper sensor for highly specific detection of ofloxacin in beef[J]. Journal of Food Chemistry & Nanotechnology,2019,05(04):72−78.
|
[43] |
LIU J, WANG B, HUANG H, et al. Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips[J]. Food Chemistry,2021,335:127596. doi: 10.1016/j.foodchem.2020.127596
|
[44] |
HU G, GAO S, HAN X, et al. Comparison of immunochromatographic strips using colloidal gold, quantum dots, and upconversion nanoparticles for visual detection of norfloxacin in milk samples[J]. Food Analytical Methods,2020,13(5):1069−1077. doi: 10.1007/s12161-020-01725-3
|
[45] |
XIAO J, LIU M, TIAN F, et al. Stable europium-based metal-organic frameworks for naked-eye ultrasensitive detecting fluoroquinolones antibiotics[J]. Inorganic Chemistry,2021,60(7):5282−5289. doi: 10.1021/acs.inorgchem.1c00263
|
[46] |
TENG P, GAO D, YANG X, et al. In situ SERS detection of quinolone antibiotic residues in a water environment based on optofluidic in-fiber integrated Ag nanoparticles[J]. Applied Optics,2021,60(22):6659−6664. doi: 10.1364/AO.426611
|
[47] |
TIAN Y, LI G, ZHANG H, et al. Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules[J]. Optics Express,2018,26(18):23347−23358. doi: 10.1364/OE.26.023347
|
[48] |
NGUYEN L D, HUYNH T M, NGUYEN T S V, et al. Nafion/platinum modified electrode-on-chip for the electrochemical detection of trace iron in natural water[J]. Journal of Electroanalytical Chemistry,2020,873:114396. doi: 10.1016/j.jelechem.2020.114396
|
[49] |
WANG Q, XUE Q, CHEN T, et al. Recent advances in electrochemical sensors for antibiotics and their applications[J]. Chinese Chemical Letters,2021,32(2):609−619. doi: 10.1016/j.cclet.2020.10.025
|
[50] |
HU X, GOUD K Y, KUMAR V S, et al. Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin[J]. Sensors and Actuators B:Chemical,2018,268(1):278−286.
|
[51] |
SINGH V, KUSS S. Pico-molar electrochemical detection of ciprofloxacin at composite electrodes[J]. Analyst,2022,147(16):3773−3782. doi: 10.1039/D2AN00645F
|
[52] |
SADAT KHALOO S, MOZAFFARI S, BAREKAT A, et al. Fabrication of a modified electrode based on multi-walled carbon nanotubes decorated with iron oxide nanoparticles for the determination of enrofloxacin[J]. Micro & Nano Letters,2015,10(10):561−566.
|
[53] |
LÜ L, ZHANG B, TIAN P, et al. A “signal off” aptasensor based on AuNPs/Ni-MOF substrate-free catalyzed for detection enrofloxacin[J]. Journal of Electroanalytical Chemistry,2022,911:116251. doi: 10.1016/j.jelechem.2022.116251
|
[54] |
GISSAWONG N, SRIJARANAI S, BOONCHIANGMA S, et al. An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent[J]. Microchimica Acta,2021,188(6):208. doi: 10.1007/s00604-021-04869-z
|
[55] |
PILEHVAR S, REINEMANN C, BOTTARI F, et al. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin[J]. Sensors and Actuators B:Chemical,2017,240:1024−1035. doi: 10.1016/j.snb.2016.09.075
|
[56] |
AYMARD C, KANSO H, SERRANO M J, et al. Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples[J]. Food Chemistry,2022,370:131016. doi: 10.1016/j.foodchem.2021.131016
|
[57] |
TAGHDISI HEIDARIAN S M, TAVANAEE SANI A, DANESH N M, et al. A novel electrochemical approach for the ultrasensitive detection of fluoroquinolones based on a double-labelled aptamer to surpass complementary strands of aptamer lying flat[J]. Sensors and Actuators B:Chemical,2021,334:129632. doi: 10.1016/j.snb.2021.129632
|
[58] |
DE SOUZA C C, ALVES G F, LISBOA T P, et al. Low-cost paper-based electrochemical sensor for the detection of ciprofloxacin in honey and milk samples[J]. Journal of Food Composition and Analysis,2022,112:104700. doi: 10.1016/j.jfca.2022.104700
|
[59] |
KERGARAVAT S V, ROMERO N, REGALDO L, et al. Simultaneous electrochemical detection of ciprofloxacin and Ag(I) in a silver nanoparticle dissolution: Application to ecotoxicological acute studies[J]. Microchemical Journal,2021,162:105832. doi: 10.1016/j.microc.2020.105832
|