Citation: | ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Effect of Different Film-forming Temperature on Physicochemical Properties and Microstructure of Sorghum Straw Powder/Nano-ZnO/Polyvinyl Alcohol Nanocomposite Film[J]. Science and Technology of Food Industry, 2023, 44(9): 127−134. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070290 |
[1] |
WU M, GONG L, MA C, et al. Enhanced enzymatic saccharification of Sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking[J]. Bioresource Technology,2021,340:125695. doi: 10.1016/j.biortech.2021.125695
|
[2] |
DU W, JIANG T, SHI M, et al. Structure and properties of starch/poly (vinyl alcohol) film modificated by different inorganic salts[J]. Chemistry Select,2019,4(2):600−607.
|
[3] |
CHEN S, XIA Y, ZHANG B, et al. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances[J]. Journal of Hazardous Materials,2021,408:124956. doi: 10.1016/j.jhazmat.2020.124956
|
[4] |
MAHMOUD K H. Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2016,157:153−157. doi: 10.1016/j.saa.2015.12.029
|
[5] |
KHAN M N, REHMAN N, SHARIF A, et al. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication[J]. International Journal of Biological Macromolecules,2020,153:72−78. doi: 10.1016/j.ijbiomac.2020.02.333
|
[6] |
张关涛, 张东杰, 李娟, 等. 纳米纤维素的制备及其在食品包装材料中应用的研究进展[J]. 食品工业科技,2022,43(3):430−437. [ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Research progress on the preparation of nanocellulose and its application in food packaging materials[J]. Food Industry Science and Technology,2022,43(3):430−437.
|
[7] |
OUNKAEW A, KASEMSIRI P, KAMWILAISAK K, et al. Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid[J]. Journal of Polymers and the Environment,2018,26(9):3762−3772. doi: 10.1007/s10924-018-1254-z
|
[8] |
ZANELA J, CASAGRANDE M, REIS M O, et al. Biodegradable sheets of starch/polyvinyl alcohol (PVA): Effects of PVA molecular weight and hydrolysis degree[J]. Waste and Biomass Valorization,2019,10(2):319−326. doi: 10.1007/s12649-017-0051-6
|
[9] |
CHAUDHURI B, GHOSH S, MONDAL B, et al. Preparation and characterization of carbon fibre powder (CFP)-polyvinyl alcohol (PVA) composite films showing percolation threshold behaviour[J]. Materials Science and Engineering:B,2022,275:115500. doi: 10.1016/j.mseb.2021.115500
|
[10] |
PANG A L, ARSAD A, AHMADIPOUR M, et al. Effect of soil burial on silane treated and untreated kenaf fiber filled linear low-density polyethylene/polyvinyl alcohol composites[J]. BioResources,2020,15(4):8648. doi: 10.15376/biores.15.4.8648-8661
|
[11] |
JAYARAMUDU T, VARAPRASAD K, PYARASANI R D, et al. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application[J]. Carbohydrate Polymers,2021,254:117302. doi: 10.1016/j.carbpol.2020.117302
|
[12] |
WANG L, MU R J, LI Y, et al. Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films[J]. LWT,2019,113:108293. doi: 10.1016/j.lwt.2019.108293
|
[13] |
DELORME A E, RADUSIN T, MYLLYTIE P, et al. Enhancement of gas barrier properties and durability of poly (butylene succinate-co-butylene adipate)-based nanocomposites for food packaging applications[J]. Nanomaterials,2022,12(6):978. doi: 10.3390/nano12060978
|
[14] |
ZHU R, YU Q, LI M, et al. Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review[J]. Journal of Environmental Chemical Engineering,2021,9(5):105905. doi: 10.1016/j.jece.2021.105905
|
[15] |
BAKARE I O, OKIEIMEN F E, PAVITHRAN C, et al. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites[J]. Materials & Design,2010,31(9):4274−4280.
|
[16] |
ZHONG Y, SONG X, LI Y. Antimicrobial, physical and mechanical properties of kudzu starch-chitosan composite films as a function of acid solvent types[J]. Carbohydrate Polymers,2011,84(1):335−342. doi: 10.1016/j.carbpol.2010.11.041
|
[17] |
ORTEGA-TORO R, MUÑOZ A, TALENS P, et al. Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol[J]. Food Hydrocolloids,2016,56:9−19. doi: 10.1016/j.foodhyd.2015.11.029
|
[18] |
中国国家标准化管理委员会. GB/T 6672-2001塑料薄膜和薄片厚度测定: 机械测量法[S]. 北京: 中国标准出版社, 2001.
Standardization Administration of China. GB/T 6672-2001 Determination of thickness of plastic film and sheet: Mechanical measurement method[S]. Beijing: China Standard Press, 2001.
|
[19] |
中国国家标准化管理委员会. GB/T 1040.3-2006薄塑和薄片的拉伸性能测试标准方法[S]. 北京: 中国标准出版社, 2006.
Standardization Administration of China. GB/T 1040.3-2006 Standard method for tensile properties of thin plastics and sheets[S]. Beijing: China Standard Press, 2006.
|
[20] |
中国国家标准化管理委员会. GB 1037-1988塑料薄膜和片材透水蒸气性试验方法: 杯式法[S]. 北京: 中国标准出版社, 1988.
Standardization Administration of China. GB 1037-1988 Test method for water vapor permeability of plastic films and sheets: Cup method[S]. Beijing: China Standard Press, 1988.
|
[21] |
中国国家标准化管理委员会. GB/T 16928-1997包装材料试验方法透湿率[S]. 北京: 中国标准出版社, 1997.
Standardization Administration of China. GB/T 16928-1997 Test method for moisture permeability of packaging materials[S]. Beijing: China Standard Press, 1997.
|
[22] |
XIANG F, XIA Y, WANG Y, et al. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation[J]. Food Packaging and Shelf Life,2021,29:100701. doi: 10.1016/j.fpsl.2021.100701
|
[23] |
向飞, 王岩, 夏玉婷, 等. 干燥温度对魔芋葡甘聚糖/纳米玉米醇溶蛋白复合膜微观结构和理化性能的影响[J]. 食品工业科技,2022,43(6):243−249. [XIANG Fei, WANG Yan, XIA Yuting, et al. Effects of drying temperature on the microstructure and physicochemical properties of konjac glucomannan/nano-zein composite films[J]. Food Industry Science and Technology,2022,43(6):243−249.
|
[24] |
BACHVAROVA-NEDELCHEVA A, IORDANOVA R, KOSTOV K L, et al. Sol-gel powder synthesis in the TiO2-TeO2-ZnO system: Structural characterization and properties[J]. Arabian Journal of Chemistry,2020,13(9):7132−7146. doi: 10.1016/j.arabjc.2020.07.018
|
[25] |
WANG K, WU K, XIAO M, et al. Structural characterization and properties of konjac glucomannan and zein blend films[J]. International Journal of Biological Macromolecules,2017,105:1096−1104. doi: 10.1016/j.ijbiomac.2017.07.127
|
[26] |
LI C, XIANG F, WU K, et al. Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying[J]. Carbohydrate Polymers,2020,250:116840. doi: 10.1016/j.carbpol.2020.116840
|
[27] |
PAPADAKI A, MANIKAS A C, PAPAZOGLOU E, et al. Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach[J]. Food Chemistry,2022,385:132604. doi: 10.1016/j.foodchem.2022.132604
|
[28] |
XIE K, TU H, DOU Z, et al. The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system[J]. Polymer,2021,215:123379. doi: 10.1016/j.polymer.2021.123379
|
[29] |
THUY V T T, HAO L T, JEON H, et al. Sustainable, self-cleaning, transparent, and moisture/oxygen-barrier coating films for food packaging[J]. Green Chemistry,2021,23(7):2658−2667. doi: 10.1039/D0GC03647A
|
[30] |
LI C, WU K, SU Y, et al. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films[J]. International Journal of Biological Macromolecules,2019,138:135−143. doi: 10.1016/j.ijbiomac.2019.07.007
|
[31] |
ZHOU N, WANG L, YOU P, et al. Preparation of pH-sensitive food packaging film based on konjac glucomannan and hydroxypropyl methyl cellulose incorporated with mulberry extract[J]. International Journal of Biological Macromolecules,2021,172:515−523. doi: 10.1016/j.ijbiomac.2021.01.047
|
[32] |
OLIVEIRA T G, MAKISHI G L A, CHAMBI H N M, et al. Cellulose fiber reinforced biodegradable films based on proteins extracted from castor bean (Ricinus communis L.) cake[J]. Industrial Crops and Products,2015,67:355−363. doi: 10.1016/j.indcrop.2015.01.036
|
[33] |
BEDANE A H, EIĆ M, FARMAHINI-FARAHANI M, et al. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films[J]. Journal of Membrane Science,2015,493:46−57. doi: 10.1016/j.memsci.2015.06.009
|
[34] |
BISHAY I K, ABD-EL-MESSIEH S L, MANSOUR S H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder[J]. Materials & Design,2011,32(1):62−68.
|
[35] |
ROMANI V P, PRENTICE-HERNANDEZ C, MARTINS V G. Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging[J]. Industrial Crops and Products,2017,97:268−274. doi: 10.1016/j.indcrop.2016.12.026
|
[36] |
HASAN M, GOPAKUMAR D A, OLAIYA N G, et al. Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films[J]. International Journal of Biological Macromolecules,2020,156:896−905. doi: 10.1016/j.ijbiomac.2020.04.039
|
[37] |
ESTRADA-MONJE A, ALONSO-ROMERO S, ZITZUMBO-GUZMÁN R, et al. Thermoplastic starch-based blends with improved thermal and thermomechanical properties[J]. Polymers,2021,13(23):4263. doi: 10.3390/polym13234263
|
[38] |
ESPINO E, CAKIR M, DOMENEK S, et al. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley[J]. Industrial Crops and Products,2014,62:552−559. doi: 10.1016/j.indcrop.2014.09.017
|
[39] |
WU C, PENG S, WEN C, et al. Structural characterization and properties of konjac glucomannan/curdlan blend films[J]. Carbohydrate Polymers,2012,89(2):497−503. doi: 10.1016/j.carbpol.2012.03.034
|
[40] |
JIANG S, LIU C, WANG X, et al. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles[J]. LWT-Food Science and Technology,2016,69:251−257. doi: 10.1016/j.lwt.2016.01.053
|
[41] |
RAHMAN M M, NETRAVALI A N, TIIMOB B J, et al. Bioderived “green” composite from soy protein and eggshell nanopowder[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2329−2337.
|