Citation: | TIAN Zhuxi, DAI Mengling, LI Yongfu, et al. Optimization of Enzymatic Transformation Process for Different Forms of Polyphenols from Blueberry Pulp and Its Antioxidant Activity Analysis[J]. Science and Technology of Food Industry, 2023, 44(9): 207−215. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070339 |
[1] |
韩彩静, 王文亮, 陈相艳, 等. 应面法优化超声波提取蓝莓多酚工艺[J]. 南方农业学报,2014,45(2):285−290. [HAN C J, WANG W L, CHEN X Y, et al. Optimization of ultrasonic-assisted extraction process of blueberry polyphenols using response surface methodology[J]. Journal of Southern,2014,45(2):285−290.
|
[2] |
熊颖, 禹霖, 柏文富, 等. 不同品种蓝莓果实品质特征和抗氧化能力及多酚组成的比较[J]. 中南林业科技大学学报,2022,42(2):119−128. [XIONG Y, YU L, BAI W F, et al. Evaluation of quality characteristics, antioxidant ability and polyphenol composition of different blueberry cultivars[J]. Journal of Central South University of Forestry & Technology,2022,42(2):119−128. doi: 10.14067/j.cnki.1673-923x.2022.02.013
|
[3] |
王怀玲. 蓝莓多酚化合物抗衰老活性及作用机制研究[D]. 广州: 华南理工大学, 2018.
WANG H L. Research on antiaging activity and mechanism of blueberry polyphenols[D]. Guangzhou: South China University of Technology, 2018.
|
[4] |
王馨悦. 几种富含花青素果蔬的 HPLC 特征图谱构建及其生物活性研究[D]. 贵阳: 贵州师范大学, 2018.
WANG X Y. Construction of HPLC characteristic maps of several anthocyanin rich fruits and vegetables and their biological activities[D]. Guiyang: Guizhou Normal University, 2018.
|
[5] |
NORTON C, KALEA A Z, HARRIS P D, et al. Wild blueberry-rich diets affect the contractile machinery of the vascular smooth muscle in the Sprague-Dawley rat[J]. Journal of Medicinal Food,2005,8(1):8−13. doi: 10.1089/jmf.2005.8.8
|
[6] |
MATTILA P, HELLSTIOM J, TORRONEN R. Phenolic acids in berries, fruits, and beverages[J]. Journal of Agriculture and Food Chemistry,2006,54(19):7193−7199. doi: 10.1021/jf0615247
|
[7] |
颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15):249−254. [YAN C Z, YE F Y, ZHAO G H. A review of studies on free and bound polyphenols in foods[J]. Food Science and Technology,2015,36(15):249−254. doi: 10.7506/spkx1002-6630-201515046
|
[8] |
GAO B H, WANG J W, WANG Y H, et al. Influence of fermentation by lactic acid bacteria and in vitro digestion on the biotransformations of blueberry juice phenolics[J]. Food Control,2022,133:108603. doi: 10.1016/j.foodcont.2021.108603
|
[9] |
齐岩, 檀昕, 程安玮, 等. 葡萄皮和籽中游离酚和结合酚组成及抗氧化活性比较[J]. 核农学报,2017,31(1):104−109. [QI Y, TAN X, CHEN A W, et al. Free and bound phenolic contents and antioxidant activity in grape peel and seed[J]. Journal of Nuclear Agricultural Sciences,2017,31(1):104−109. doi: 10.11869/j.issn.100-8551.2017.01.0104
|
[10] |
KHAN S A, LIU L, LAI T, et al. Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria[J]. Journal of Food Science and Technology,2018,55(12):4782−4791. doi: 10.1007/s13197-018-3411-8
|
[11] |
YAO J Y, CHEN J X, YANG J, et al. Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace[J]. LWT,2021:135.
|
[12] |
韩雪. 乳酸菌增强红枣多酚抗氧化活性的研究[D]. 西安: 陕西师范大学, 2018.
HAN X. Study on the antioxidative activity of jujube polyphenols enhanced by lactic acid bacteria[D]. Xi’an: Shaanxi Normal University, 2018.
|
[13] |
BEI Q, WU Z, CHEN G. Dynamic changes in the phenolic composition and antioxidant activity of oats during simultaneous hydrolysis and fermentation[J]. Food Chemistry,2019,305:125−269.
|
[14] |
KHOSRAVI A, RAZAVI S H. The role of bioconversion processes to enhance bioaccessibility of polyphenols in rice[J]. Food Bioscience,2020,35:100605. doi: 10.1016/j.fbio.2020.100605
|
[15] |
崔梦情. 真菌固态发酵释放葡萄籽多酚及其机制研究[D]. 咸阳: 西北农林科技大学, 2021.
CUI M Q. The mechanism and the release of grape seed polyphenols by solid-state fermentation of fungi[D]. Xianyang: Northwest Sci-Tech University of Agriculture and Forestry, 2021.
|
[16] |
BELWAL T, EZZAT S M, RASTRELLI L, et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies[J]. Trends in Analytical Chemistry,2018,100:82−102. doi: 10.1016/j.trac.2017.12.018
|
[17] |
王储炎, 张继刚, 杨柳青, 等. 3种乳酸菌发酵对蓝莓多酚、原花青素含量及抗氧化活性的影响[J]. 食品科学,2020,41(24):87−94. [WANG C Y, ZHANG J G, YANG L Q, et al. Comparative effects of fermentation with three species of lactic acid bacteria on polyphenol and proanthocyanidin contents and antioxidant activity of blueberry fruit[J]. Food Science and Technology,2020,41(24):87−94. doi: 10.7506/spkx1002-6630-20200326-387
|
[18] |
LIU L, WEN W, ZHANG R, et al. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran[J]. Food Chemistry,2017,214:1−8. doi: 10.1016/j.foodchem.2016.07.038
|
[19] |
TANG Y, ZHANG B, LI X, et al. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects[J]. Journal of Agricultural and Food Chemistry,2016,64(8):1712−1719. doi: 10.1021/acs.jafc.5b05761
|
[20] |
徐杰, 李新光, 王建中, 等. 黑果腺肋花楸果汁的酶解制备工艺优化及其功能性质[J]. 食品工业科技,2020,41(1):125−131. [XU J, LI X G, WANG J Z, et al. Optimization of enzymatic hydrolysis for production of Aronia melanocarpa juice and its functional properties[J]. Science and Technology of Food Industry,2020,41(1):125−131. doi: 10.13386/j.issn1002-0306.2020.01.021
|
[21] |
刘媛洁, 张良. 响应面法优化复合酶辅助超声波提取柚子皮总黄酮工艺[J]. 食品工业科技,2019,40(23):143−150. [LIU Y J, ZHANG L. Optimization of enzymatic assisted ultrasonic extraction of total flavonoids from grapefruit peel by response surface methodology[J]. Science and Technology of Food Industry,2019,40(23):143−150. doi: 10.13386/j.issn1002-0306.2019.23.024
|
[22] |
穆婷婷, 张福耀, 李志华, 等. 不同时期施硒对谷子硒含量、有机硒转化率及谷子品质的影响[J]. 华北农学报,2018,33(6):193−198. [MU T T, ZHANG F Y, LI Z H, et al. Effects of spraying selenium on selenium content, conversion rate of organic selenium and quality of foxtail millet in different stages[J]. Acta Agriculturae Boreali-Sinica,2018,33(6):193−198. doi: 10.7668/hbnxb.2018.06.026
|
[23] |
王露. 番石榴叶活性多酚组分快速鉴别及发酵释放与转化机制[D]. 广州: 华南理工大学, 2018.
WANG L. Quick identification and the mechanism in the release and transformation by fermentation of active phenolics components in guava leaves[D]. Guangzhou: South China University of Technology, 2018.
|
[24] |
WANG L, LUO Y, WU Y N, et al. Fermentation plus enzymatic hydrolysis on improving the soluble phenolics and flavonoid aglycone contents from Psidium guajava L. leaves and their bioactivites[J]. Food Chemistry,2018,264:189−198. doi: 10.1016/j.foodchem.2018.05.035
|
[25] |
李亚辉, 马艳弘, 黄开红, 等. 响应面法优化复合酶提取芦荟多糖工艺及其抗氧化活性分析[J]. 食品科学,2014,35(18):63−68. [LI Y H, MA Y H, HUANG K H, et al. Optimization of enzymatic hydrolysis conditions for the extraction of aloe polysaccharides using response surface methodology and assessment of their antioxidant activity[J]. Food Science and Technology,2014,35(18):63−68. doi: 10.7506/spkx1002-6630-201418012
|
[26] |
林英男. 复合酶法制备发酵型山药酒及其澄清工艺的研究[D]. 济南: 齐鲁工业大学, 2014.
LIN Y N. Study on the fermented Chinese yam wine via compound enzymatic hypothesis and its clarification process[D]. Jinan: Qilu University of Technology, 2014.
|
[27] |
杨明静, 邹青飞, 黄勇桦, 等. 基于改善辣木多酚生物有效性的发酵菌株筛选[J]. 食品科技,2022,47(6):30−36. [YANG M H, ZOU Q F, HUANG Y H, et al. Screening the fermentation strains for improving the bioaccessibility of polyphenols from Moringa oleifera[J]. Food Science and Technology,2022,47(6):30−36. doi: 10.3969/j.issn.1005-9989.2022.6.spkj202206005
|
[28] |
GLIGOR O, MOCAN A, MOLDOVAN C, et al. Enzyme-assisted extractions of polyphenols-A comprehensive review[J]. Trends in Food Science & Technology,2019,88:302−315.
|
[29] |
高阳, 冯悦, 吕姝锦, 等. 酶水解法释放甘薯结合酚[J]. 食品研究与开发,2022,43(11):118−1125. [GAO Y, FENG Y, LÜ S J, et al. Release of bound phenol from sweet potato under enzymolysis[J]. Food Research and Development,2022,43(11):118−1125. doi: 10.12161/j.issn.1005-6521.2022.11.015
|
[30] |
刘璇璇, 武莹敏, 朱振宝. 水酶法联产核桃油和核桃多肽工艺优化及油脂脂肪酸分析[J/OL]. 食品工业科技: 1−11 [2022-07-22]. DOI: 10.13386/j.issn1002-0306.2021120102.
LIU X X, WU Y M, ZHU Z B. Optimization of synchronous extraction process of oil and polypeptide from walnut by aqueous enzymatic method and the fatty acid composition analysis of its oil[J/OL]. Science and Technology of Food Industry: 1−11 [2022-07-22]. DOI: 10.13386/j.issn1002-0306.2021120102.
|
[31] |
程红, 隋秀芳. 酶解法提取蓝莓果汁的研究[J]. 中国酿造,2017,36(4):5. [CHENG H, SUI X F. Research on the extraction of blueberry juice by enzymolysis method[J]. China Brewing,2017,36(4):5.
|
[32] |
毕晓娟, 魏亮, 杨慧莹, 等. 响应面法优化元宝枫籽粕酶解工艺及多肽功能特性研究[J]. 食品工业科技,2022,43(14):204−214. [BI X J, WEI L, YANG H Y, et al. Optimization of the enzymatic hydrolysis process of Acer truncatum seed meal by response surface methodology and study of the functional characteristics of the polypeptide obtained[J]. Science and Technology of Food Industry,2022,43(14):204−214. doi: 10.13386/j.issn1002-0306.2021100138
|
[33] |
田怀香, 陈霜, 陈小燕, 等. 不同提取方式对萱草花中酚类物质及抗氧化活性的影响[J]. 农业工程学报,2021,37(20):303−312. [TIAN H X, CHEN S, CHEN X, et al. Effects of different extraction methods on phenolic compounds and antioxidant activity in Hemerocallis flower[J]. Transactions of the CSAE,2021,37(20):303−312. doi: 10.11975/j.issn.1002-6819.2021.20.034
|
[34] |
王悦, 徐元元, 杨二林, 等. 酶解结合高剪切破壁技术对蜂花粉酚类物质及抗氧化活性的影响[J]. 农业工程学报,2021,37(2):313−320. [WANG Y, XU Y Y, YANG E L, et al. Effects of enzymatic hydrolysis combined with high-shear wall breaking technology on phenolic compounds and antioxidant activity of bee pollen[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(2):313−320. doi: 10.11975/j.issn.1002-6819.2021.2.036
|
[35] |
WANG L, WU Y, YAN L, et al. Complex enzyme-assisted extraction releases antioxidative phenolic compositions from guava leaves[J]. Molecules,2017,22(10):1648. doi: 10.3390/molecules22101648
|
[36] |
LIU L, ZHANG R, DENG Y, et al. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase[J]. Food Chemistry,2017,221(APR.15):636−643.
|
[37] |
LI T, JIANG T, LIU N, et al. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria[J]. Food Chemistry,2021,339:127−859.
|