Citation: | LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373 |
[1] |
UKOWIAK M. Utilizing sponge spicules in taxonomic, ecological and environmental reconstructions: A review[J]. Peer J,2020,8(2):e10601.
|
[2] |
PAUL V J, FREEMAN C J, AGARWAL V. Chemical ecology of marine sponges: New opportunities through “-Omics”[J]. Integrative and Comparative Biology,2019,59(4):765−776. doi: 10.1093/icb/icz014
|
[3] |
ANTENEH Y S, YANG Q, BROWN M H, et al. Antimicrobial activities of marine sponge-associated bacteria[J]. Microorganisms,2021,9(1):171. doi: 10.3390/microorganisms9010171
|
[4] |
El-DEMERDASH A, ATANASOV A G, HORBANCZUK O K, et al. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review[J]. Mar Drugs,2019,17(2):115. doi: 10.3390/md17020115
|
[5] |
DATTA D, TALAPATRA S N, SWARNAKAR S. Bioactive compounds from marine invertebrates for potential medicines-An overview[J]. Int Lett Nat Sci,2015,34:42−61.
|
[6] |
MARIEKE K DIRK M, RENE W. Towards commercial production of sponge medicines[J]. Mar Drugs,2009,7(4):787−802. doi: 10.3390/md7040787
|
[7] |
SIMMONS T L, ANDRIANASOLO E, MCPHAIL K, et al. Marine natural products as anticancer drugs[J]. Mol Cancer Ther,2005,4(2):333. doi: 10.1158/1535-7163.333.4.2
|
[8] |
NEWMAN D J, CRAGG G M. Marine natural products and related compounds in clinical and advanced preclinical trials[J]. J Nat Prod,2004,67(8):1216−1238. doi: 10.1021/np040031y
|
[9] |
CARROLL A R, COPP B R, DAVI S, et al. Marine natural products[J]. Nat Prod Rep,2019,36:122−173. doi: 10.1039/C8NP00092A
|
[10] |
ZHU J Y, LIU Y, LIU Z J, et al. Bioactive nitrogenous secondary metabolites from the marine sponge genus Haliclona[J]. Mar Drugs,2019,17(12):682. doi: 10.3390/md17120682
|
[11] |
NADAR V M, MANIVANNAN S, CHINNAIYAN R, et al. Review on marine sponge alkaloid, aaptamine: A potential anti-bacterial and anti-cancer drug[J]. Chem Biol Drug Des,2022,99:103−110. doi: 10.1111/cbdd.13932
|
[12] |
ZHANG B, ZHANG T, XU J Z, et al. Marine sponge-associated fungi as potential novel bioactive natural product sources for drug discovery: A review[J]. Mini Rev Med Cheistry,2020,20:1966−2010. doi: 10.2174/1389557520666200826123248
|
[13] |
CHENG M M, TANG X L, SUN Y T, et al. Biological and chemical diversity of marine sponge-derived microorganisms over the last two decades from 1998 to 2017[J]. Molecules,2020,25(4):853. doi: 10.3390/molecules25040853
|
[14] |
SYAMSUDIN A, AWIK P D N, SRI N, et al. Cytotoxic and antioxidant activities of marine sponge diversity at pecaron bay pasir putih situbondo East Java, Indonesia[J]. J Phar Res,2013,6(7):685−689.
|
[15] |
ZHANG H W, ZHAO Z P, WANG H. Cytotoxic natural products from marine sponge-derived microorganisms[J]. Mar Drugs,2017,15(3):68. doi: 10.3390/md15030068
|
[16] |
CAMPOS P E, PICKON E, MORIOU C, et al. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata[J]. Mar Drugs,2019,17(3):167. doi: 10.3390/md17030167
|
[17] |
KIM Y A, JI Y K, KIM N H, et al. Isoquinolinequinone derivatives from a marine sponge (Haliclona sp.) regulate inflammation in vitro system of intestine[J]. Mar Drugs,2021,19(2):90. doi: 10.3390/md19020090
|
[18] |
TINTILLIER F, MORIOU C, PETEK S, et al. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the polynesian sponge Pseudoceratinan sp.[J]. Mar Drugs,2020,18(5):272. doi: 10.3390/md18050272
|
[19] |
MUTHIYAN R, MAHANTA N, NAMBIKKAIRAJ B, et al. Antioxidant and anti-inflammatory effects of a methanol extract from the marine sponge Hyrtios erectus[J]. Phcog Mag,2018,14:534−540. doi: 10.4103/pm.pm_133_17
|
[20] |
HU T Y, ZHANG H, CHEN Y Y, et al. Dysiarenone from marine sponge Dysidea arenaria attenuates ROS and inflammation via inhibition of 5-LOX/NF-κB/MAPKs and upregulation of Nrf-2/OH-1 in RAW 264.7 macrophages[J]. J Inf Res,2021,14:587−597. doi: 10.2147/JIR.S283745
|
[21] |
GINER R M, RÍOS J L, MÁÑEZ S. Antioxidant activity of natural hydroquinones[J]. Antioxidants,2022,11(2):343. doi: 10.3390/antiox11020343
|
[22] |
SUNARWIDHI A L, ROSYANTARI A, PRASEDYA E S, et al. The correlation between total protein content and antioxidant activity of collagen isolated from a marine sponge Stylissa flabelliformis collected from North Lombok Indonesia coast[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 913(1): 012103.
|
[23] |
OOGARAH P N, RAMANJOOLOO A, ROVISHAM J, et al. Assessing antioxidant activity and phenolic content of marine sponges from mauritius waters[J]. International Journal of Pharmacognosy and Phytochemical Research,2020,12:123−131.
|
[24] |
AFSHARI K, SAMAVATI V, SHAHIDI S A. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf[J]. International Journal of Biological Macromolecules,2015,74:558−567. doi: 10.1016/j.ijbiomac.2014.07.023
|
[25] |
张红军. 三种西沙海绵化学成分和生物活性研究[D]. 上海: 第二军医大学, 2009
ZHANG H J. Chemical constituents and bioactivities of three marine sponges from Paracel Islands[D]. Shanghai: The Second Military Medical University, 2009.
|
[26] |
YOUSSEF D T A. Hyrtioerectines A-C, Cytotoxic Alkaloids from the red sea sponge Hyrtios erectus[J]. Journal of Natural Products,2005,68(9):1416−1419. doi: 10.1021/np050142c
|
[27] |
SWANTARA I M D, RITA W S, HERNINDY R A. Isolation and phytochemical test of anticancer isolate of sponge Hyrtios erecta[J]. Jhsm Unud J,2017,1:16−20. doi: 10.24843/JHSM.2017.v01.i01.p05
|
[28] |
AL-MASSARANI S M, EL-GAMAL A A, AL-SAID M S, et al. Studies on the red sea sponge Haliclona sp. for its chemical and cytotoxic properties[J]. Pharmacognosy Magazine,2016,12(46):114. doi: 10.4103/0973-1296.177906
|
[29] |
陈江艳, 王维滔, 董益阳, 等. 响应面优化蒲公英橡胶草菊糖提取工艺及其MALDI-TOF MS分析[J]. 食品工业科技,2022,43(1):205−212. [CHEN J Y, WANG W T, DONG Y Y, et al. Optimization of extraction of inulin from Taraxacum kok-saghyz Rodin by response surface methodology and its MALDI-TOF MS analysis[J]. Science and Technology of Food Industry,2022,43(1):205−212.
|
[30] |
钱燕芳, 石晨莹, 陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(16):201−210. [QIAN Yanfang, SHI Chenying, CHEN Guitang. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori fructus and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(16):201−210. doi: 10.13386/j.issn1002-0306.2021110007
|
[31] |
叶兆伟, 叶润, 赫丁轩, 等. 息半夏多糖提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):90−98. [YE Z W, YE R, HAO D X, et al. Optimization of polysaccharide extraction from Xi Pinellia ternate by response surface methodology and its antioxidant activity[J]. China Food Additives,2022,33(1):90−98. doi: 10.19804/j.issn1006-2513.2022.01.014
|
[32] |
常国立, 房祥军, 陈明, 等. 杨梅核多酚提取优化及体外抗氧化和降血糖活性研究[J]. 食品科技,2022,47(1):212−218. [CHANG G L, FANG X J, CHEN M, et al. Extraction optimization and in vitro antioxidant and hypoglycemic activity of polyphenols from Myrica rubra kernel[J]. Food Science and Technology,2022,47(1):212−218. doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201032
|
[33] |
AATI H N, EL-GAMAL A, KAYSER O. Chemical composition and biological activity of the essential oil from the root of Jatropha pelargoniifolia Courb. native to Saudi Arabia[J]. Saudi Pharm J,2019,27(1):88−95. doi: 10.1016/j.jsps.2018.09.001
|
[34] |
杜毅超, 张浩, 黄治伟, 等. 芹菜素对H2O2诱导人肝细胞L02氧化损伤模型的影响[J]. 临床肝胆病杂志,2020,36(5):1077−1081. [DU Y C, ZHANG H, HUANG Z W, et al. Effect of apigenin on H2O2-induced oxidative injury in human hepatocytes L02[J]. J Clin Hepatol,2020,36(5):1077−1081. doi: 10.3969/j.issn.1001-5256.2020.05.025
|
[35] |
LI C, YANG F, HUANG Y, et al. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality[J]. Journal of Food Engineering,2020,265:109697. doi: 10.1016/j.jfoodeng.2019.109697
|
[36] |
YE L, ZHU X, WEI X. Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation[J]. Ultrasonics Sonochemistry,2020,67:105175. doi: 10.1016/j.ultsonch.2020.105175
|
[37] |
罗维巍, 李双, 刁全平, 等. 响应面法优化超声提取酸浆宿萼中叶黄素的工艺及抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):62−68. [LUO W W, LI S, DIAO Q P, et al. Optimization of ultrasonic extraction process for lutein from calyx of Physalis by response surface methodology and its antioxidant capacity study[J]. China Food Additives,2022,33(1):62−68.
|
[38] |
杨秋明, 宋江峰, 李大婧, 等. 响应面法优化超声波提取南瓜皮叶黄素的工艺研究[J]. 食品工业科技,2018,39(1):149−155. [YANG Q M, SONG J F, LI D J, et al. Optimization of ultrasonic extraction process for lutein from pumpkin peel by response surface methodology[J]. Science and Technology of Food Industry,2018,39(1):149−155. doi: 10.13386/j.issn1002-0306.2018.01.028
|
[39] |
GUO H, CHENG J, MAO Y, et al. Synergistic effect of ultrasound and switchable hydrophilicity solvent promotes microalgal cell disruption and lipid extraction for biodiesel production[J]. Bioresource Technology,2022,343:126087. doi: 10.1016/j.biortech.2021.126087
|
[40] |
UTKINA N K. Antioxidant activity of zyzzyanones and makaluvamines from the marine sponge Zyzzya fuliginosa[J]. Natural Product Communications,2013,8(11):1551−1552.
|
[41] |
崔素萍, 陈丹, 穆秋霞, 等. 细胞氧化应激的危害及抗氧化应激的研究进展[J]. 黑龙江八一农垦大学学报,2022,34(4):74−79, 133. [CUI S P, CHEN D, MU Q X, et al. Harm of cellular oxidative stress and research progress of anti-oxidative stress[J]. Journal of Heilongjiang Bayi Agricultural University,2022,34(4):74−79, 133. doi: 10.3969/j.issn.1002-2090.2022.04.011
|
[42] |
蔡瑾, 闫然, 王梦亮, 等. 二氢槲皮素对大肠杆菌的抑菌作用机理[J/OL]. 食品科学: 1−14 [2022-09-26] DOI: 10.7506/spkx1002-6630-20220512-148.
CAI J, YAN R, WANG M L, et al. The mechanism of antimicrobial action of dihydroquercetin against Escherichia coli[J]. Food Science, 1−14 [2022-09-26] DOI: 10.7506/spkx1002-6630-20220512-148.
|