Issue 9
May. 2023
Turn off MathJax
Article Contents
LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373
Citation: LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373

Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity

doi: 10.13386/j.issn1002-0306.2022070373
  • Received Date: 02 Aug 2022
  • Issue Publish Date: 01 May 2023
  • To explore the process of extraction and antioxidant activity of products from marine sponge, three influencing factors, ultrasonic temperature, ultrasonic time, and ultrasonic power were investigated respectively taking DPPH radicals scavenging rate of ethanol extracts from H. erectus as the response value, and the optimal ultrasonic-assisted extraction process was determined by Box-Behnken design. The extract obtained from H. erectus by the best ultrasonic-assisted process was detected for antioxidant activity, which included the scavenging effect on DPPH radicals, ABTS+• and •OH. The effects of the extract on viability of oxidative damage L02 cells and content of intracellular ROS were detected by constructing a cell model of H2O2 induced oxidative damage. The results showed that the optimized process conditions were as follows: Ultrasonic temperature was 57 ℃, ultrasonic time was 60 min, and ultrasonic power was 490 W. Under these conditions, the DPPH scavenging rate of the extract was 61.98%±1.52%, which agreed well with the predicted value of 62.16%. The extract showed good scavenging effects on DPPH radical, ABTS+• and •OH. The cell viability of treated groups was significantly higher than that of the model group (P<0.05), and the intensity of intracellular ROS fluorescence was significantly lower than that of the model group (P<0.01). In general, the product from H. erectus had a wide range of antioxidant activity, and it had a protective effect on H2O2 induced oxidative damage in L02 cells. This study provides theoretical support for the research and development of antioxidant food additives.

     

  • loading
  • [1]
    UKOWIAK M. Utilizing sponge spicules in taxonomic, ecological and environmental reconstructions: A review[J]. Peer J,2020,8(2):e10601.
    [2]
    PAUL V J, FREEMAN C J, AGARWAL V. Chemical ecology of marine sponges: New opportunities through “-Omics”[J]. Integrative and Comparative Biology,2019,59(4):765−776. doi: 10.1093/icb/icz014
    [3]
    ANTENEH Y S, YANG Q, BROWN M H, et al. Antimicrobial activities of marine sponge-associated bacteria[J]. Microorganisms,2021,9(1):171. doi: 10.3390/microorganisms9010171
    [4]
    El-DEMERDASH A, ATANASOV A G, HORBANCZUK O K, et al. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review[J]. Mar Drugs,2019,17(2):115. doi: 10.3390/md17020115
    [5]
    DATTA D, TALAPATRA S N, SWARNAKAR S. Bioactive compounds from marine invertebrates for potential medicines-An overview[J]. Int Lett Nat Sci,2015,34:42−61.
    [6]
    MARIEKE K DIRK M, RENE W. Towards commercial production of sponge medicines[J]. Mar Drugs,2009,7(4):787−802. doi: 10.3390/md7040787
    [7]
    SIMMONS T L, ANDRIANASOLO E, MCPHAIL K, et al. Marine natural products as anticancer drugs[J]. Mol Cancer Ther,2005,4(2):333. doi: 10.1158/1535-7163.333.4.2
    [8]
    NEWMAN D J, CRAGG G M. Marine natural products and related compounds in clinical and advanced preclinical trials[J]. J Nat Prod,2004,67(8):1216−1238. doi: 10.1021/np040031y
    [9]
    CARROLL A R, COPP B R, DAVI S, et al. Marine natural products[J]. Nat Prod Rep,2019,36:122−173. doi: 10.1039/C8NP00092A
    [10]
    ZHU J Y, LIU Y, LIU Z J, et al. Bioactive nitrogenous secondary metabolites from the marine sponge genus Haliclona[J]. Mar Drugs,2019,17(12):682. doi: 10.3390/md17120682
    [11]
    NADAR V M, MANIVANNAN S, CHINNAIYAN R, et al. Review on marine sponge alkaloid, aaptamine: A potential anti-bacterial and anti-cancer drug[J]. Chem Biol Drug Des,2022,99:103−110. doi: 10.1111/cbdd.13932
    [12]
    ZHANG B, ZHANG T, XU J Z, et al. Marine sponge-associated fungi as potential novel bioactive natural product sources for drug discovery: A review[J]. Mini Rev Med Cheistry,2020,20:1966−2010. doi: 10.2174/1389557520666200826123248
    [13]
    CHENG M M, TANG X L, SUN Y T, et al. Biological and chemical diversity of marine sponge-derived microorganisms over the last two decades from 1998 to 2017[J]. Molecules,2020,25(4):853. doi: 10.3390/molecules25040853
    [14]
    SYAMSUDIN A, AWIK P D N, SRI N, et al. Cytotoxic and antioxidant activities of marine sponge diversity at pecaron bay pasir putih situbondo East Java, Indonesia[J]. J Phar Res,2013,6(7):685−689.
    [15]
    ZHANG H W, ZHAO Z P, WANG H. Cytotoxic natural products from marine sponge-derived microorganisms[J]. Mar Drugs,2017,15(3):68. doi: 10.3390/md15030068
    [16]
    CAMPOS P E, PICKON E, MORIOU C, et al. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata[J]. Mar Drugs,2019,17(3):167. doi: 10.3390/md17030167
    [17]
    KIM Y A, JI Y K, KIM N H, et al. Isoquinolinequinone derivatives from a marine sponge (Haliclona sp.) regulate inflammation in vitro system of intestine[J]. Mar Drugs,2021,19(2):90. doi: 10.3390/md19020090
    [18]
    TINTILLIER F, MORIOU C, PETEK S, et al. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the polynesian sponge Pseudoceratinan sp.[J]. Mar Drugs,2020,18(5):272. doi: 10.3390/md18050272
    [19]
    MUTHIYAN R, MAHANTA N, NAMBIKKAIRAJ B, et al. Antioxidant and anti-inflammatory effects of a methanol extract from the marine sponge Hyrtios erectus[J]. Phcog Mag,2018,14:534−540. doi: 10.4103/pm.pm_133_17
    [20]
    HU T Y, ZHANG H, CHEN Y Y, et al. Dysiarenone from marine sponge Dysidea arenaria attenuates ROS and inflammation via inhibition of 5-LOX/NF-κB/MAPKs and upregulation of Nrf-2/OH-1 in RAW 264.7 macrophages[J]. J Inf Res,2021,14:587−597. doi: 10.2147/JIR.S283745
    [21]
    GINER R M, RÍOS J L, MÁÑEZ S. Antioxidant activity of natural hydroquinones[J]. Antioxidants,2022,11(2):343. doi: 10.3390/antiox11020343
    [22]
    SUNARWIDHI A L, ROSYANTARI A, PRASEDYA E S, et al. The correlation between total protein content and antioxidant activity of collagen isolated from a marine sponge Stylissa flabelliformis collected from North Lombok Indonesia coast[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 913(1): 012103.
    [23]
    OOGARAH P N, RAMANJOOLOO A, ROVISHAM J, et al. Assessing antioxidant activity and phenolic content of marine sponges from mauritius waters[J]. International Journal of Pharmacognosy and Phytochemical Research,2020,12:123−131.
    [24]
    AFSHARI K, SAMAVATI V, SHAHIDI S A. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf[J]. International Journal of Biological Macromolecules,2015,74:558−567. doi: 10.1016/j.ijbiomac.2014.07.023
    [25]
    张红军. 三种西沙海绵化学成分和生物活性研究[D]. 上海: 第二军医大学, 2009

    ZHANG H J. Chemical constituents and bioactivities of three marine sponges from Paracel Islands[D]. Shanghai: The Second Military Medical University, 2009.
    [26]
    YOUSSEF D T A. Hyrtioerectines A-C, Cytotoxic Alkaloids from the red sea sponge Hyrtios erectus[J]. Journal of Natural Products,2005,68(9):1416−1419. doi: 10.1021/np050142c
    [27]
    SWANTARA I M D, RITA W S, HERNINDY R A. Isolation and phytochemical test of anticancer isolate of sponge Hyrtios erecta[J]. Jhsm Unud J,2017,1:16−20. doi: 10.24843/JHSM.2017.v01.i01.p05
    [28]
    AL-MASSARANI S M, EL-GAMAL A A, AL-SAID M S, et al. Studies on the red sea sponge Haliclona sp. for its chemical and cytotoxic properties[J]. Pharmacognosy Magazine,2016,12(46):114. doi: 10.4103/0973-1296.177906
    [29]
    陈江艳, 王维滔, 董益阳, 等. 响应面优化蒲公英橡胶草菊糖提取工艺及其MALDI-TOF MS分析[J]. 食品工业科技,2022,43(1):205−212. [CHEN J Y, WANG W T, DONG Y Y, et al. Optimization of extraction of inulin from Taraxacum kok-saghyz Rodin by response surface methodology and its MALDI-TOF MS analysis[J]. Science and Technology of Food Industry,2022,43(1):205−212.
    [30]
    钱燕芳, 石晨莹, 陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(16):201−210. [QIAN Yanfang, SHI Chenying, CHEN Guitang. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori fructus and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(16):201−210. doi: 10.13386/j.issn1002-0306.2021110007
    [31]
    叶兆伟, 叶润, 赫丁轩, 等. 息半夏多糖提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):90−98. [YE Z W, YE R, HAO D X, et al. Optimization of polysaccharide extraction from Xi Pinellia ternate by response surface methodology and its antioxidant activity[J]. China Food Additives,2022,33(1):90−98. doi: 10.19804/j.issn1006-2513.2022.01.014
    [32]
    常国立, 房祥军, 陈明, 等. 杨梅核多酚提取优化及体外抗氧化和降血糖活性研究[J]. 食品科技,2022,47(1):212−218. [CHANG G L, FANG X J, CHEN M, et al. Extraction optimization and in vitro antioxidant and hypoglycemic activity of polyphenols from Myrica rubra kernel[J]. Food Science and Technology,2022,47(1):212−218. doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201032
    [33]
    AATI H N, EL-GAMAL A, KAYSER O. Chemical composition and biological activity of the essential oil from the root of Jatropha pelargoniifolia Courb. native to Saudi Arabia[J]. Saudi Pharm J,2019,27(1):88−95. doi: 10.1016/j.jsps.2018.09.001
    [34]
    杜毅超, 张浩, 黄治伟, 等. 芹菜素对H2O2诱导人肝细胞L02氧化损伤模型的影响[J]. 临床肝胆病杂志,2020,36(5):1077−1081. [DU Y C, ZHANG H, HUANG Z W, et al. Effect of apigenin on H2O2-induced oxidative injury in human hepatocytes L02[J]. J Clin Hepatol,2020,36(5):1077−1081. doi: 10.3969/j.issn.1001-5256.2020.05.025
    [35]
    LI C, YANG F, HUANG Y, et al. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality[J]. Journal of Food Engineering,2020,265:109697. doi: 10.1016/j.jfoodeng.2019.109697
    [36]
    YE L, ZHU X, WEI X. Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation[J]. Ultrasonics Sonochemistry,2020,67:105175. doi: 10.1016/j.ultsonch.2020.105175
    [37]
    罗维巍, 李双, 刁全平, 等. 响应面法优化超声提取酸浆宿萼中叶黄素的工艺及抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):62−68. [LUO W W, LI S, DIAO Q P, et al. Optimization of ultrasonic extraction process for lutein from calyx of Physalis by response surface methodology and its antioxidant capacity study[J]. China Food Additives,2022,33(1):62−68.
    [38]
    杨秋明, 宋江峰, 李大婧, 等. 响应面法优化超声波提取南瓜皮叶黄素的工艺研究[J]. 食品工业科技,2018,39(1):149−155. [YANG Q M, SONG J F, LI D J, et al. Optimization of ultrasonic extraction process for lutein from pumpkin peel by response surface methodology[J]. Science and Technology of Food Industry,2018,39(1):149−155. doi: 10.13386/j.issn1002-0306.2018.01.028
    [39]
    GUO H, CHENG J, MAO Y, et al. Synergistic effect of ultrasound and switchable hydrophilicity solvent promotes microalgal cell disruption and lipid extraction for biodiesel production[J]. Bioresource Technology,2022,343:126087. doi: 10.1016/j.biortech.2021.126087
    [40]
    UTKINA N K. Antioxidant activity of zyzzyanones and makaluvamines from the marine sponge Zyzzya fuliginosa[J]. Natural Product Communications,2013,8(11):1551−1552.
    [41]
    崔素萍, 陈丹, 穆秋霞, 等. 细胞氧化应激的危害及抗氧化应激的研究进展[J]. 黑龙江八一农垦大学学报,2022,34(4):74−79, 133. [CUI S P, CHEN D, MU Q X, et al. Harm of cellular oxidative stress and research progress of anti-oxidative stress[J]. Journal of Heilongjiang Bayi Agricultural University,2022,34(4):74−79, 133. doi: 10.3969/j.issn.1002-2090.2022.04.011
    [42]
    蔡瑾, 闫然, 王梦亮, 等. 二氢槲皮素对大肠杆菌的抑菌作用机理[J/OL]. 食品科学: 1−14 [2022-09-26] DOI: 10.7506/spkx1002-6630-20220512-148.

    CAI J, YAN R, WANG M L, et al. The mechanism of antimicrobial action of dihydroquercetin against Escherichia coli[J]. Food Science, 1−14 [2022-09-26] DOI: 10.7506/spkx1002-6630-20220512-148.
  • 加载中

Catalog

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return