Citation: | LUO Zhan, CHEN Lei. Research Progress of Molecular Pathogenic Mechanism and Nutritional Intervention of Gut Microbiome[J]. Science and Technology of Food Industry, 2023, 44(10): 463−468. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090055 |
[1] |
BÄCKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science,2005,307(5717):1915−1920. doi: 10.1126/science.1104816
|
[2] |
METWALY A, REITMEIER S, HALLER D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders[J]. Nat Rev Gastroenterol Hepatol,2022,19(6):383−397. doi: 10.1038/s41575-022-00581-2
|
[3] |
XU X, OCANSEY D K W, HANG S, et al. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease[J]. Gut Pathog,2022,14(1):26. doi: 10.1186/s13099-022-00499-9
|
[4] |
CANI P D, DEPOMMIER C, DERRIEN M, et al. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms[J]. Nat Rev Gastroenterol Hepatol,2022(10):625−637.
|
[5] |
ZHAO L, ZHANG F, DING X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774
|
[6] |
IVANOV II, TUGANBAEV T, SKELLY A N, et al. T cell responses to the microbiota[J]. Annu Rev Immunol,2022,40:559−587. doi: 10.1146/annurev-immunol-101320-011829
|
[7] |
PEREZ-PARDO P, DODIYA H B, ENGEN P A, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: A translational study from men to mice[J]. Gut,2019,68(5):829−843. doi: 10.1136/gutjnl-2018-316844
|
[8] |
TAN A H, LIM S Y, LANG A E. The microbiome-gut-brain axis in Parkinson disease-from basic research to the clinic[J]. Nat Rev Neurol,2022,18(8):476−495. doi: 10.1038/s41582-022-00681-2
|
[9] |
BISGAARD T H, ALLIN K H, KEEFER L, et al. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment[J]. Nat Rev Gastroenterol Hepatol,2022,19(11):717−726. doi: 10.1038/s41575-022-00634-6
|
[10] |
WALTER J, ARMET A M, FINLAY B B, et al. Establishing or exaggerating causality for the gut microbiome: Lessons from human microbiota-associated rodents[J]. Cell,2020,180(2):221−232. doi: 10.1016/j.cell.2019.12.025
|
[11] |
ZHAO L, ZHAO N. Demonstration of causality: Back to cultures[J]. Nat Rev Gastroenterol Hepatol,2021,18(2):97−98. doi: 10.1038/s41575-020-00400-6
|
[12] |
HOU Y, WEI W, GUAN X, et al. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut[J]. Nat Commun,2021,12(1):271. doi: 10.1038/s41467-020-20673-4
|
[13] |
ZHANG L, YUE Y, SHI M, et al. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice[J]. Food Chem,2020,320:126648. doi: 10.1016/j.foodchem.2020.126648
|
[14] |
VIOLI F, CAMMISOTTO V, BARTIMOCCIA S, et al. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease[J]. Nat Rev Cardiol, 2022: 1-14.
|
[15] |
TURPIN W, DONG M, SASSON G, et al. Mediterranean-like dietary pattern associations with gut microbiome composition and subclinical gastrointestinal inflammation[J]. Gastroenterology,2022,163(3):685−698. doi: 10.1053/j.gastro.2022.05.037
|
[16] |
YAO S, ZHANG M, DONG S S, et al. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression [J]. Nat Hum Behav, 2022,6(11):1569-1576.
|
[17] |
FEI N, ZHAO L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. Isme J,2013,7(4):880−884. doi: 10.1038/ismej.2012.153
|
[18] |
BLACHER E, BASHIARDES S, SHAPIRO H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice[J]. Nature,2019,572(7770):474−480. doi: 10.1038/s41586-019-1443-5
|
[19] |
SIDO B, HACK V, HOCHLEHNERT A, et al. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease[J]. Gut,1998,42(4):485−492. doi: 10.1136/gut.42.4.485
|
[20] |
CHENG M, ZHAO Y, CUI Y, et al. Stage-specific roles of microbial dysbiosis and metabolic disorders in rheumatoid arthritis[J]. Ann Rheum Dis, 2022,81(12):1669-1677.
|
[21] |
FEI N, BRUNEAU A, ZHANG X, et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease[J]. mBio,2020,11(1):e03263−19.
|
[22] |
LAMAS B, RICHARD M L, LEDUCQ V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med,2016,22(6):598−605. doi: 10.1038/nm.4102
|
[23] |
SROUR B, KORDAHI M C, BONAZZI E, et al. Ultra-processed foods and human health: From epidemiological evidence to mechanistic insights[J]. Lancet Gastroenterol Hepatol,2022,S2468-1253(22):00169−8.
|
[24] |
ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635−1638. doi: 10.1126/science.1110591
|
[25] |
PRYDE S E, DUNCAN S H, HOLD G L, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiol Lett,2002,217(2):133−139. doi: 10.1111/j.1574-6968.2002.tb11467.x
|
[26] |
LOOMBA R, SANYAL A J. The global NAFLD epidemic[J]. Nat Rev Gastroenterol Hepatol,2013,10(11):686−690. doi: 10.1038/nrgastro.2013.171
|
[27] |
LI J, CASANOVA J L, PUEL A. Mucocutaneous IL-17 immunity in mice and humans: Host defense vs. excessive inflammation[J]. Mucosal Immunol,2018,11(3):581−589. doi: 10.1038/mi.2017.97
|
[28] |
OKADA S, MARKLE J G, DEENICK E K, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations[J]. Science,2015,349(6248):606−613. doi: 10.1126/science.aaa4282
|
[29] |
HONDA K, LITTMAN D R. The microbiota in adaptive immune homeostasis and disease[J]. Nature,2016,535(7610):75−84. doi: 10.1038/nature18848
|
[30] |
KAWANO Y, EDWARDS M, HUANG Y, et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome[J]. Cell,2022,185(19):3501−3519. doi: 10.1016/j.cell.2022.08.005
|
[31] |
GOTO Y, PANEA C, NAKATO G, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation[J]. Immunity,2014,40(4):594−607. doi: 10.1016/j.immuni.2014.03.005
|
[32] |
YANG Y, TORCHINSKY M B, GOBERT M, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens[J]. Nature,2014,510(7503):152−156. doi: 10.1038/nature13279
|
[33] |
ATARASHI K, TANOUE T, ANDO M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells[J]. Cell,2015,163(2):367−380. doi: 10.1016/j.cell.2015.08.058
|
[34] |
SANO T, HUANG W, HALL J A, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses[J]. Cell,2015,163(2):381−393. doi: 10.1016/j.cell.2015.08.061
|
[35] |
LEE J Y, HALL J A, KROEHLING L, et al. Serum amyloid a proteins induce pathogenic th17 cells and promote inflammatory disease[J]. Cell,2020,180(1):79−91. doi: 10.1016/j.cell.2019.11.026
|
[36] |
ZHOU W, ZHOU L, ZHOU J, et al. ZBTB46 defines and regulates ILC3s that protect the intestine[J]. Nature,2022,609(7925):159−165. doi: 10.1038/s41586-022-04934-4
|
[37] |
GRIGG J B, SHANMUGAVADIVU A, REGEN T, et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation[J]. Nature,2021,600(7890):707−712. doi: 10.1038/s41586-021-04136-4
|
[38] |
ZHANG M, CHU Y, MENG Q, et al. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children[J]. Sci Adv,2020,6(43):eaba3760. doi: 10.1126/sciadv.aba3760
|
[39] |
SHARON G, CRUZ N J, KANG D W, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice[J]. Cell,2019,177(6):1600−1618. doi: 10.1016/j.cell.2019.05.004
|
[40] |
LIU Y, YANG M, TANG L, et al. TLR4 regulates RORγt(+) regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila[J]. Microbiome,2022,10(1):98. doi: 10.1186/s40168-022-01296-x
|
[41] |
ZHANG J H, XIN H L, XU Y M, et al. Morinda officinalis How. —A comprehensive review of traditional uses, phytochemistry and pharmacology[J]. J Ethnopharmacol,2018,213:230−255. doi: 10.1016/j.jep.2017.10.028
|
[42] |
CHI L, CHEN L, ZHANG J, et al. Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda officinalis[J]. J Pharm Biomed Anal,2018,156:125−132. doi: 10.1016/j.jpba.2018.04.028
|
[43] |
ZHANG Z W, GAO C S, ZHANG H, et al. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota[J]. Acta Pharm Sin B,2022,12(8):3298−3312. doi: 10.1016/j.apsb.2022.02.032
|
[44] |
HUANG F, ZHENG X, MA X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun,2019,10(1):4971. doi: 10.1038/s41467-019-12896-x
|
[45] |
BOLTE L A, VICH VILA A, IMHANN F, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome[J]. Gut,2021,70(7):1287−1298. doi: 10.1136/gutjnl-2020-322670
|
[46] |
KE S, WEISS S T, LIU Y Y. Rejuvenating the human gut microbiome[J]. Trends Mol Med,2022,28(8):619−630. doi: 10.1016/j.molmed.2022.05.005
|
[47] |
CHEN D, WU J, JIN D, et al. Fecal microbiota transplantation in cancer management: Current status and perspectives[J]. Int J Cancer,2019,145(8):2021−2031. doi: 10.1002/ijc.32003
|
[48] |
KEDIA S, VIRMANI S, S K V, et al. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: A randomised controlled trial[J]. Gut, 2022,71(12):2401-2413.
|
[49] |
FEDERICI S, KREDO-RUSSO S, VALDéS-MAS R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell,2022,185(16):2879−2898. doi: 10.1016/j.cell.2022.07.003
|
[50] |
TANG S, CHEN Y, DENG F, et al. Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model[J]. Carbohydr Polym,2022,294:119776. doi: 10.1016/j.carbpol.2022.119776
|
[51] |
HE X Q, LIU D, LIU H Y, et al. Prevention of ulcerative colitis in mice by sweet tea (Lithocarpus litseifolius) via the regulation of gut microbiota and butyric-acid-mediated anti-inflammatory signaling[J]. Nutrients,2022,14(11):2208. doi: 10.3390/nu14112208
|
[52] |
ZHAO Y, JIANG Q. Roles of the polyphenol-gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer[J]. Adv Nutr,2021,12(2):546−565. doi: 10.1093/advances/nmaa104
|
[53] |
PANDEY K B, RIZVI S I. Plant polyphenols as dietary antioxidants in human health and disease[J]. Oxid Med Cell Longev,2009,2(5):270−278. doi: 10.4161/oxim.2.5.9498
|
[54] |
CANTU-JUNGLES T M, BULUT N, CHAMBRY E, et al. Dietary fiber hierarchical specificity: The missing link for predictable and strong shifts in gut bacterial communities[J]. mBio,2021,12(3):e0102821. doi: 10.1128/mBio.01028-21
|
[55] |
ZHANG X, MONNOYE M, MARIADASSOU M, et al. Glucose but not fructose alters the intestinal paracellular permeability in association with gut inflammation and dysbiosis in mice[J]. Front Immunol,2021,12:742584. doi: 10.3389/fimmu.2021.742584
|
[56] |
MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab,2022,33(4):247−265. doi: 10.1016/j.tem.2022.01.002
|
[57] |
KOSINSKA A, ANDLAUER W. Modulation of tight junction integrity by food components[J]. Food Research International,2013,54(1):951−960. doi: 10.1016/j.foodres.2012.12.038
|
[58] |
AMASHEH M, FROMM A, KRUG S M, et al. TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling[J]. J Cell Sci, 2010, 123(Pt 23): 4145-4155.
|
[59] |
SUZUKI T, HARA H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells[J]. J Nutr,2009,139(5):965−974. doi: 10.3945/jn.108.100867
|
[60] |
MAYANGSARI Y, SUZUKI T. Resveratrol ameliorates intestinal barrier defects and inflammation in colitic mice and intestinal cells[J]. J Agric Food Chem,2018,66(48):12666−12674. doi: 10.1021/acs.jafc.8b04138
|
[61] |
CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes,2008,57(6):1470−1481. doi: 10.2337/db07-1403
|
[62] |
DONG L, XIE J, WANG Y, et al. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity[J]. Nat Commun,2022,13(1):4804. doi: 10.1038/s41467-022-32505-8
|
[63] |
BAE M, CASSILLY C D, LIU X, et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses[J]. Nature,2022,608(7921):168−173. doi: 10.1038/s41586-022-04985-7
|
[64] |
BELKAID Y, HARRISON O J. Homeostatic immunity and the microbiota[J]. Immunity,2017,46(4):562−576. doi: 10.1016/j.immuni.2017.04.008
|
[65] |
ANSALDO E, BELKAID Y. How microbiota improve immunotherapy[J]. Science,2021,373(6558):966−967. doi: 10.1126/science.abl3656
|
[66] |
BEUKEMA M, JERMENDI É, OERLEMANS M M P, et al. The level and distribution of methyl-esters influence the impact of pectin on intestinal T cells, microbiota, and Ahr activation[J]. Carbohydr Polym,2022,286:119280. doi: 10.1016/j.carbpol.2022.119280
|
[67] |
TCHITCHEK N, NGUEKAP TCHOUMBA O, PIRES G, et al. Low-dose interleukin-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation[J]. JCI Insight,2022,7(17):e159406. doi: 10.1172/jci.insight.159406
|
[68] |
JENSEN S N, CADY N M, SHAHI S K, et al. Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis[J]. Sci Adv,2021,7(28):eabd4595. doi: 10.1126/sciadv.abd4595
|
[69] |
EZRA-NEVO G, HENRIQUES S F, RIBEIRO C. The diet-microbiome tango: How nutrients lead the gut brain axis[J]. Curr Opin Neurobiol,2020,62:122−132. doi: 10.1016/j.conb.2020.02.005
|