Citation: | LI Zhen, WANG Jinxiang, LI Xuepeng, et al. Preparation of Modified Starch-Based Silver Carp Oil Pickering Emulsion and Its Physicochemical Properties[J]. Science and Technology of Food Industry, 2023, 44(9): 27−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100272 |
[1] |
TAN Y, XU K, LIU C, et al. Fabrication of starch-based nanospheres to stabilize pickering emulsion[J]. Carbohydrate Polymers,2012,88(4):1358−1363. doi: 10.1016/j.carbpol.2012.02.018
|
[2] |
王然. 辛烯基琥珀酸纳米淀粉酯颗粒的制备及其食品级Pickering乳液的特性[J]. 食品科学,2019,40(20):94−99. [WANG Ran. Preparation of octenylsuccinate nano-starch ester particles and their properties of food-grade Pickering emulsion[J]. Food Science,2019,40(20):94−99. doi: 10.7506/spkx1002-6630-20190316-204
|
[3] |
XIA T, XUE C, WEI Z H. Physicochemical characteristics, applications and research trends of edible Pickering emulsions[J]. Trends in Food Science & Technology,2021,107:1−15.
|
[4] |
LUZ A, MARIA L H, MARIA L F. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature[J]. Food Hydrocolloids,2018,80:97−110. doi: 10.1016/j.foodhyd.2018.01.032
|
[5] |
LI S, ZHANG B, TAN C P, et al. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism[J]. Food Hydrocolloids,2019,91:40−47. doi: 10.1016/j.foodhyd.2019.01.001
|
[6] |
YU Z Y, JIANG S W, ZHENG Z, et al. Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions[J]. International Journal of Biological Macromolecules,2019,137:277−285. doi: 10.1016/j.ijbiomac.2019.06.230
|
[7] |
FOO M L, OOI C W, TAN K W, et al. Preparation of black cumin seed oil Pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch[J]. Chemosphere,2021,287:132108.
|
[8] |
YIMER E. M., TUEM K B, KARIM A et al. Nigella sativa L. (black cumin): A promising natural remedy for wide range of illnesses[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019:1−16.
|
[9] |
LI H, WU C C, YIN Z W, et al. Emulsifying properties and bioavailability of clove essential oil Pickering emulsions stabilized by octadecylaminated carboxymethyl curdlan[J]. International Journal of Biological Macromolecules,2022,216:629−642. doi: 10.1016/j.ijbiomac.2022.07.029
|
[10] |
YU H P, HANG G T, MA Y Q, et al. Cellulose nanocrystals based clove oil Pickering emulsion for enhanced antibacterial activity[J]. International Journal of Biological Macromolecules,2021,170:24−32. doi: 10.1016/j.ijbiomac.2020.12.027
|
[11] |
FEREIDOON S, PRIYATHARINI A. Omega-3 polyunsaturated fatty acids and their health benefits[J]. Annual Review of Food Science and Technology,2018,9(1):345−381. doi: 10.1146/annurev-food-111317-095850
|
[12] |
HOSSEINI R S, RAJAEI A. Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise[J]. Carbohydrate Polymers,2020,241(2):116340.
|
[13] |
REN Z Y, LI Z M, CHEN Z Z, et al. Characteristics and application of fish oil-in-water pickering emulsions structured with tea water-insoluble proteins/κ-carrageenan complexes[J]. Food Hydrocolloids,2021,114:106562. doi: 10.1016/j.foodhyd.2020.106562
|
[14] |
DING M Z, ZHANG T, ZHANG H, et al. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions[J]. Food Chemistry,2020,309:125642. doi: 10.1016/j.foodchem.2019.125642
|
[15] |
YANG M Y, YANG L L, XU J M, et al. Comparison of silver carp fin gelatins extracted by three types of methods: Molecular characteristics, structure, function, and pickering emulsion stabilization[J]. Food Chemistry,2022,368:130818. doi: 10.1016/j.foodchem.2021.130818
|
[16] |
李小敏. 淀粉基复合胶体颗粒皮克林乳液的构建与应用[D]. 合肥: 合肥工业大学, 2020
LI Xiaomin. Construction and application of starch-based composite colloidal particle Pickering emulsion[D]. Hefei: Hefei University of Technology, 2020.
|
[17] |
王标. 鲶鱼鱼糜在不同低温贮藏下的品质及其蛋白质理化特性的研究[D]. 太原: 山西农业大学, 2019
WANG Biao. Study on the quality of catfish surimi and its protein physicochemical properties under different low temperature storage[D]. Taiyuan: Shanxi Agricultural University, 2019.
|
[18] |
赵玲玲. pH、Na+及萃取剂对大豆种皮多糖乳化性影响研究[D]. 锦州: 渤海大学, 2019
ZHAO Lingling. Effects of pH, Na+ and extractant on the emulsification of soybean seed coat polysaccharide[D]. Jinzhou: Bohai University, 2019.
|
[19] |
LI C, LI Y X, SUN P D, et al. Pickering emulsions stabilized by native starch granules[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,431(33):142−149.
|
[20] |
曾海燕. 壳聚糖纳米粒子的制备及其稳定皮克林乳液的研究[D]. 无锡: 江南大学, 2015
ZENG Haiyan. Preparation of chitosan nanoparticles and their stabilization of Pickering emulsion[D]. Wuxi: Jiangnan University, 2015.
|
[21] |
YAN C, MCCLEMENTS D J, ZOU L Q, et al. A stable high internal phase emulsion fabricated with OSA-modified starch: An improvement in β-carotene stability and bioaccessibility[J]. Food & Function,2019,10(9):5446−5460.
|
[22] |
BURGOS D C, WANDERSLEBEN T, OLIVOS M, et al. Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): Chemical characterization and emulsifying properties[J]. Food Hydrocolloids,2019,87:847−857. doi: 10.1016/j.foodhyd.2018.09.018
|
[23] |
李星科. 壳聚糖的增稠、乳化性质及机制研究[D]. 无锡: 江南大学, 2011
LI Xingke. Study on the thickening and emulsifying properties and mechanism of chitosan [D]. Wuxi: Jiangnan University, 2011.
|
[24] |
STELLE K S. Lectures on supergravity p-branes[J]. Fortschritte Der Physik Progress of Physics,1997,50(10-11):1126−1172.
|
[25] |
JI Y, KANG W, MENG L, et al. Study of the solution behavior of β-cyclodextrin amphiphilic polymer inclusion complex and the stability of its O/W emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,453:117−124.
|
[26] |
ZHU Y Q, CHEN X, JULIAN D, et al. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content[J]. Journal of Dispersion Science and Technology,2018,39(6):826−835. doi: 10.1080/01932691.2017.1398660
|
[27] |
FAN Z. Starch based Pickering emulsions: Fabrication, properties, and applications[J]. Trends in Food Science & Technology,2019,85:129−137.
|
[28] |
ZHU X F, ZHENG J, LIU F, et al. Freeze-thaw stability of Pickering emulsions stabilized by soy protein nanoparticles. Influence of ionic strength before or after emulsification[J]. Food Hydrocolloids,2018,74:37−45. doi: 10.1016/j.foodhyd.2017.07.017
|
[29] |
LIU C K, FAN L X, YANG Y Y, et al. Characterization of surimi particles stabilized novel Pickering emulsions: Effect of particles concentration, pH and NaCl levels[J]. Food Hydrocolloids,2021,117(23):106731.
|
[30] |
ZHU W, ZHENG F, SONG X, et al. Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles[J]. Carbohydrate Polymers,2020,246:116649. doi: 10.1016/j.carbpol.2020.116649
|
[31] |
DAI L, SUN C A, WEI Y, et al. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles[J]. Food Hydrocolloids,2018,74:239−248. doi: 10.1016/j.foodhyd.2017.07.040
|