Issue 1
Feb 2020
Turn off MathJax
Article Contents
ZHANG Bin, CHAI Shouxi, WEI Houzhen, MENG Qingshan, CHEN Yang. INFLUENCE OF CORAL SAND PARTICLE SHAPE ON THE COM ̄PRESSION PROPERTY OF COARSE GRAINED CALCAREOUS SOIL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
Citation: ZHANG Bin, CHAI Shouxi, WEI Houzhen, MENG Qingshan, CHEN Yang. INFLUENCE OF CORAL SAND PARTICLE SHAPE ON THE COM ̄PRESSION PROPERTY OF COARSE GRAINED CALCAREOUS SOIL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016

INFLUENCE OF CORAL SAND PARTICLE SHAPE ON THE COM ̄PRESSION PROPERTY OF COARSE GRAINED CALCAREOUS SOIL

doi: 10.13544/j.cnki.jeg.2019-016
Funds:

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA19060301

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010201

National Natural Science Foundation of China 41877260

National Natural Science Foundation of China 41877267

Natural Science Foundation of Tianjin 17JCZDJC39200

Natural Science Foundation of Tianjin 17JCYBJC22200

  • Received Date: 09 Jan 2019
  • Rev Recd Date: 29 Sep 2019
  • Publish Date: 25 Feb 2020
  • The irregular shape of coral sand particles is a major feature that distinguishes it significantly from the ordinary terrigenous soil. In order to research the influence of coral sand particle shape on the compression property of coarse grained calcareous soil, different coral sand particles(block, branch, rod, flake) were selected manually. Based on the block particles, mixed with any of the other three different shapes of coral sand particles, the different particle shape ratios were controlled to make coarse grained calcareous soil samples, and the indoor compression tests were complete. The particle shape parameters such as roundness, length-width ratio, flatness and convexity of coral sand particles before and after the test were compared and analyzed. The effects of particle shape on the compressibility were evaluated. The test results show that:(1)The compression modulus of coarse grained calcareous soil with diameters of 10~20mm is from 4 to 5.5MPa, and the rebound coefficient is from 42 to 53; (2)With the increase of the amount of branch, rod or flake particles(0, 10%, 20%, 30%), the compressive modulus of the sample changed slightly, and the rebound coefficient continued to decrease. (3)The stress-strain curves of each loading range include one stable point and three sections which are rapid growth stress section, synchronous increase of stress and strain section, strain growth section; (4)With the increase of the amount of branch particles, the length-width ratio and the convexity of the sample increased gradually, while the roundness and flatness were unchanged substantially. Due to the influence of particle breakage, the length-width ratio and flatness of the sample increased after the test, while the roundness and concavity decreased. When selecting coarse grained calcareous soil foundation, its compressibility should be considered to avoid rapid loading at the beginning of construction.

     

  • loading
  • Cavarretta I, Coop M, O'Sullivan C. 2010. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 60(6): 413-423. doi: 10.1680/geot.2010.60.6.413
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806012
    Feng X B, Xi Y, Song D Q, et al. 2016. PFC2D based fractal model for tensile strength and breakage energy of rock particle crushing[J]. Journal of Engineering Geology, 24(4): 629-634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201604019
    Guo P J, Su X B. 2007. Shear strength, interparticle locking, and dilatancy of granular materials[J]. Canadian Geotechnical Journal, 44(5): 579-591. doi: 10.1139/t07-010
    Georgoutsos G, BodasFreitas T, Sorensen K K, et al. 2004. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    Kim S H, Kim N. 2007. Micromechanics analysis of granular soils to estimate inherent anisotropy[J]. KSCE Journal of Civil Engineering, 11(3): 145-149. doi: 10.1007/BF02823894
    Kwan A K H, Mora C F, Chan H C. 1999. Particle shape analysis of coarse aggregate using digital image processing[J]. Cement and Concrete Research, 29(9): 1403-1410. doi: 10.1016/S0008-8846(99)00105-2
    Liu Q B, Xiang W, Budhu M, et al. 2011. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 32 (S1): 190-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8823227
    Mark L H, Neil W P. 2003. Selection of descriptors for particle shape characterization[J]. Particle and Particle System Characterization, 20 (1): 25~38. doi: 10.1002/ppsc.200390002
    Meng Q S, Qin Y, Wang R. 2012. Liquefaction characteristics and mechanism of coral reef sediments[J]. Soil Engineering and Foundation, 26(1): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201201007
    Mora C F, Kwan A K H. 2000. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing[J]. Cement and Concrete Research, 30(3): 351-358. doi: 10.1016/S0008-8846(99)00259-8
    Qin Y, Yao T, Wang R, et al. 2014. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 35(11): 3123-3128. http://d.old.wanfangdata.com.cn/Periodical/ytlx201411012
    Rouse P, Fannin R, Shuttle D. 2008. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique, 58(3): 227-231. doi: 10.1680/geot.2008.58.3.227
    Tsomokos A, Georgiannou V N. 2010. Effect of grain shape and angularity on the undrained response of fine sands[J]. Canadian Geotechnical Journal, 47(5): 539-551. doi: 10.1139/T09-121
    Wang X Z, Wang R, Meng Q S, et al. 2009. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 31 (1): 147-151, 156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200901025
    Wang X Z, Jiao Y Y, Wang R, et al. 2011. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 120(1-4): 40-47. doi: 10.1016/j.enggeo.2011.03.011
    Xu Y F. 2018. PFC2D simulation of rockfill shear strength based on particle fragmentation[J]. Journal of Engineering Geology, 26(6): 1409-1414. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806001
    Xu X Y, Wang R, Wang X Z, et al. 2012. Experimental study of dynamic behavior of saturated calcareous sand due to explosion[J]. Rock and Soil Mechanics, 33(10): 2953-2959. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201210012
    Yang J, Luo X D. 2015. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 84 : 196-213. doi: 10.1016/j.jmps.2015.08.001
    Zhang J F, Ye J B, Chen J S, et al. 2016. A preliminary study of measurement and evaluation of break stone grain shape[J]. Rock and Soil Mechanics, 37(2): 343-348. doi: 10.16285/j.rsm.2016.02.005
    陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变及强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    冯兴波, 奚悦, 宋丹青, 等. 2016.基于PFC2D岩石颗粒破碎强度和能量的分形模型[J].工程地质学报, 24(4): 629-634. doi: 10.13544/j.cnki.jeg.2016.04.019
    刘清秉, 项伟, Budhu M, 等. 2011.砂土颗粒形状量化及其对力学指标的影响分析[J].岩土力学, 32 (S1): 190-197. http://d.old.wanfangdata.com.cn/Conference/8823227
    孟庆山, 秦月, 汪稔. 2012.珊瑚礁钙质沉积物液化特性及其机理研究[J].土工基础, 26(1): 21-24. doi: 10.3969/j.issn.1004-3152.2012.01.007
    秦月, 姚婷, 汪稔, 等. 2014.基于颗粒破碎的钙质沉积物高压固结变形分析[J].岩土力学, 35(11): 3123-3128. http://d.old.wanfangdata.com.cn/Periodical/ytlx201411012
    王新志, 汪稔, 孟庆山, 等. 2009.钙质砂室内载荷试验研究[J].岩土力学, 31 (1): 147-151, 156. doi: 10.3969/j.issn.1000-7598.2009.01.025
    徐永福. 2018.基于颗粒破碎的粗粒土剪切强度的模拟分析[J].工程地质学报, 26(6): 1409-1414. doi: 10.13544/j.cnki.jeg.2017-432
    徐学勇, 汪稔, 王新志, 等. 2012.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学, 33(10): 2953-2959. http://d.old.wanfangdata.com.cn/Periodical/ytlx201210012
    张家发, 叶加兵, 陈劲松, 等. 2016.碎石颗粒形状测量与评定的初步研究[J].岩土力学, 37(2): 343-349. http://d.old.wanfangdata.com.cn/Periodical/ytlx201602005
  • 加载中

Catalog

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(248) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return