Issue 1
Feb 2020
Turn off MathJax
Article Contents
PAN Dengli, NI Wankui, YUAN Kangze, ZHANG Zhenfei, WANG Xijun. DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156
Citation: PAN Dengli, NI Wankui, YUAN Kangze, ZHANG Zhenfei, WANG Xijun. DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156

DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL

doi: 10.13544/j.cnki.jeg.2019-156
Funds:

the Key Research and Development Program of Shaanxi Province 2017ZDXM-SF-087

the Key Research and Development Program of Shaanxi Province 2019ZDLSF05-07

  • Received Date: 11 Apr 2019
  • Rev Recd Date: 25 Oct 2019
  • Publish Date: 25 Feb 2020
  • The variables of the soil-water characteristic curve(air-entry value, residual suction and slope at the inflection point) are very critical parameters in the strength theory, percolation theory and volume change behavior of unsaturated soil. It is often obtained by conventional graphical method, which is subjective and inaccurate. This study presents the methods for determining the variables of unimodal and bimodal SWCC based on VG model using the measured SWCC data of the four layers of undisturbed loess in Luochuan standard section. SWCC data were measured by filter paper method and best fitted using Van Genuchten's equation. Consequently the best fitting parameters were obtained, and the proposed methods were validated using the measured unimodal and bimodal SWCC data. The water evaporation test in the natural state was carried out. Then the evaporation residual saturation Srzf was determined according to the relationship between the mass moisture content and the evaporation time. According to the relative errors between Sr1, Sr2 and Srzf(Sr1 and Sr2 were acquired from the two methods for determining the residual state, respectively), the comparison was made between the two methods for determining the residual state. The results suggest that the proposed methods can produce reasonable variables and determine the residual state effectively related to the unimodal and bimodal SWCC.

     

  • loading
  • Bates S, Jonaitis D, Nail S. 2013. Sucrose lyophiles: A semi-quantitative study of residual water content by total X-ray diffraction analysis[J]. European Journal of Pharmaceutics & Biopharmaceutics, 85(2): 184-188. http://cn.bing.com/academic/profile?id=a72e99edb282b7b251958a364e8493f6&encoded=0&v=paper_preview&mkt=zh-cn
    Bishop A W. 1959. The principle of effective stress[J]. Teknisk Ukeblad, 39: 859-863. http://d.old.wanfangdata.com.cn/Periodical/ytlx201801015
    Burdine N T. 1953. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 5 : 71-78. doi: 10.2118/225-G
    Burton G, Sheng D, Campbell C. 2014. Bimodal pore size distribution of a high-plasticity compacted clay[J]. Géotechnique Letters, 4 : 88-93. doi: 10.1680/geolett.14.00003
    Childs E C, Collis-George N. 1950. The permeability of porous materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201 : 392-405. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1211.6885
    Cook F J. 1991. Calculation of hydraulic conductivity from suction permeameter measurements[J]. Soil Science, 152(5): 321-325. doi: 10.1097/00010694-199111000-00002
    D18 Committee. 2016. Standard test method for measurement of soil potential(suction) using filter paper (ASTM D5298-16)[S]. West Conshohocken, PA.
    Fleureau J M, Kheirbeksaoud S, Soemitro R, et al. 1993. Behavior of clayey soils on drying-wetting paths[J]. Canadian Geotechnical Journal, 30(2): 287-296. doi: 10.1139/t93-024
    Fredlund D G. 2006. Unsaturated soil mechanics in engineering practice[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(3): 286-321. doi: 10.1061/(ASCE)1090-0241(2006)132:3(286)
    Gao Y, Sun D A. 2017. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 39(10): 1884-1891. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201710017
    Genuchten M T V. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(44): 892-898. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce45a331f64792c4e74d5a74039efdf6
    Jia B X, Wang H, Zhou L L, et al. 2018. Experimental study on soil-water characteristic curve of aeolian soil roadbed in western Liaoning Province[J]. Journal of Engineering Geology, 26(3): 633-638. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201803010
    Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27(5): 1019-1026. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201905010
    Li X, Li J H, Zhang L M. 2014. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers & Geotechnics, 57(4): 85-96. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232634239/
    Li Y F. 1994. Research on the relationships between permeability and porosity for loess[M]. Beijing: Geological Publishing House.
    Mualem Y. 1976. A new model for predicting hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    Rao H R H, Venkataramana K V, Singh D N S N. 2011. Studies on the determination of swelling properties of soils from suction measurements[J]. Revue Canadienne De Géotechnique, 48(3): 375-387. doi: 10.1139/T10-076
    Shi Z M, Liu W R, Peng M, et al. 2018. Experimental study on soil-water characteristic curve of reticulate red clay and its application in slope stability evaluation[J]. Journal of Engineering Geology, 26(1): 164-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201801019
    Sillers W S, Fredlund D G. 2001. Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J]. Canadian Geotechnical Journal, 38(6): 1297-1313. doi: 10.1139/t01-066
    Sillers W S, Fredlund D G, Zakerzadeh N. 2001. Mathematical attributes of some soil-water characteristic curve models[M]. Springer Netherlands.
    Soltani A, Azimi M, An D, et al. 2017. A simplified method for determination of the soil-water characteristic curve variables[J]. International Journal of Geotechnical Engineering, (3): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/19386362.2017.1344450
    Tang C S, Shi B, Gu K. 2011. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 19(6): 875-881. http://cn.bing.com/academic/profile?id=2332a210d55ec12bbc15dbcd2bab3b21&encoded=0&v=paper_preview&mkt=zh-cn
    Tao G L, Li J, Zhuang X S, et al. 2018. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics[J]. Rock and Soil Mechanics, 39(4): 1256-1262. http://d.old.wanfangdata.com.cn/Periodical/ytlx201804014
    Vanapalli S K, Fredlund D G, Pufahl D E, et al. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33(3): 379-392. doi: 10.1139/t96-060
    Wang T H, Li Y L, Su L J. 2014. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 36(5): 942-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201405026
    Yuan Z H, Ni W K, Liu R, et al. 2015. Study of shear strength of unsaturated and undisturbed loess based on suction stress[J]. Journal of Hefei University of Technology(Natural Science), 38(5): 648-653. http://www.en.cnki.com.cn/Article_en/CJFDTotal-HEFE201505016.htm
    Zhai Q, Rahardjo H. 2012. Determination of soil-water characteristic curve variables[J]. Computers & Geotechnics, 42(42): 37-43. http://cn.bing.com/academic/profile?id=33353e9f45f463f1fe973fa5ead0e98b&encoded=0&v=paper_preview&mkt=zh-cn
    高游, 孙德安. 2017.单峰和双峰土水特征曲线基本参数的确定[J].岩土工程学报, 39(10): 1884-1891. doi: 10.11779/CJGE201710017
    贾宝新, 王荷, 周琳力, 等. 2018.辽西风积土路基土水特征曲线试验研究[J].工程地质学报, 26(3): 633-638. doi: 10.13544/j.cnki.jeg.2017-264
    李同录, 范江文, 习羽, 等. 2019.击实黄土孔隙结构对土水特征的影响分析[J].工程地质学报, 27(5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045
    李云峰. 1994.黄土渗透性与空隙性关系的研究[M].北京:地质出版社.
    石振明, 刘巍然, 彭铭, 等. 2018.网纹红土土水特征曲线试验研究及其在边坡稳定性评价中的应用[J].工程地质学报, 26(1): 164-171. doi: 10.13544/j.cnki.jeg.2018.01.018
    唐朝生, 施斌, 顾凯. 2011.土中水分的蒸发过程试验研究[J].工程地质学报, 19(6): 875-881. doi: 10.3969/j.issn.1004-9665.2011.06.012
    陶高梁, 李进, 庄心善, 等. 2018.利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率[J].岩土力学, 39(4): 1256-1262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201804014
    王铁行, 李彦龙, 苏立君. 2014.黄土表面吸附结合水的类型和界限划分[J].岩土工程学报, 36(5): 942-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201405026
    袁志辉, 倪万魁, 刘茹, 等. 2015.基于吸应力的非饱和黄土抗剪强度研究[J].合肥工业大学学报(自然科学版), 38 (5): 648-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfgydxxb201505016
  • 加载中

Catalog

    Figures(7)  / Tables(6)

    Article Metrics

    Article views(158) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return