Citation: | PAN Dengli, NI Wankui, YUAN Kangze, ZHANG Zhenfei, WANG Xijun. DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156 |
Bates S, Jonaitis D, Nail S. 2013. Sucrose lyophiles: A semi-quantitative study of residual water content by total X-ray diffraction analysis[J]. European Journal of Pharmaceutics & Biopharmaceutics, 85(2): 184-188. http://cn.bing.com/academic/profile?id=a72e99edb282b7b251958a364e8493f6&encoded=0&v=paper_preview&mkt=zh-cn
|
Bishop A W. 1959. The principle of effective stress[J]. Teknisk Ukeblad, 39: 859-863. http://d.old.wanfangdata.com.cn/Periodical/ytlx201801015
|
Burdine N T. 1953. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 5 : 71-78. doi: 10.2118/225-G
|
Burton G, Sheng D, Campbell C. 2014. Bimodal pore size distribution of a high-plasticity compacted clay[J]. Géotechnique Letters, 4 : 88-93. doi: 10.1680/geolett.14.00003
|
Childs E C, Collis-George N. 1950. The permeability of porous materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201 : 392-405. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1211.6885
|
Cook F J. 1991. Calculation of hydraulic conductivity from suction permeameter measurements[J]. Soil Science, 152(5): 321-325. doi: 10.1097/00010694-199111000-00002
|
D18 Committee. 2016. Standard test method for measurement of soil potential(suction) using filter paper (ASTM D5298-16)[S]. West Conshohocken, PA.
|
Fleureau J M, Kheirbeksaoud S, Soemitro R, et al. 1993. Behavior of clayey soils on drying-wetting paths[J]. Canadian Geotechnical Journal, 30(2): 287-296. doi: 10.1139/t93-024
|
Fredlund D G. 2006. Unsaturated soil mechanics in engineering practice[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(3): 286-321. doi: 10.1061/(ASCE)1090-0241(2006)132:3(286)
|
Gao Y, Sun D A. 2017. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 39(10): 1884-1891. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201710017
|
Genuchten M T V. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(44): 892-898. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce45a331f64792c4e74d5a74039efdf6
|
Jia B X, Wang H, Zhou L L, et al. 2018. Experimental study on soil-water characteristic curve of aeolian soil roadbed in western Liaoning Province[J]. Journal of Engineering Geology, 26(3): 633-638. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201803010
|
Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27(5): 1019-1026. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201905010
|
Li X, Li J H, Zhang L M. 2014. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers & Geotechnics, 57(4): 85-96. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232634239/
|
Li Y F. 1994. Research on the relationships between permeability and porosity for loess[M]. Beijing: Geological Publishing House.
|
Mualem Y. 1976. A new model for predicting hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 12(3): 513-522. doi: 10.1029/WR012i003p00513
|
Rao H R H, Venkataramana K V, Singh D N S N. 2011. Studies on the determination of swelling properties of soils from suction measurements[J]. Revue Canadienne De Géotechnique, 48(3): 375-387. doi: 10.1139/T10-076
|
Shi Z M, Liu W R, Peng M, et al. 2018. Experimental study on soil-water characteristic curve of reticulate red clay and its application in slope stability evaluation[J]. Journal of Engineering Geology, 26(1): 164-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201801019
|
Sillers W S, Fredlund D G. 2001. Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J]. Canadian Geotechnical Journal, 38(6): 1297-1313. doi: 10.1139/t01-066
|
Sillers W S, Fredlund D G, Zakerzadeh N. 2001. Mathematical attributes of some soil-water characteristic curve models[M]. Springer Netherlands.
|
Soltani A, Azimi M, An D, et al. 2017. A simplified method for determination of the soil-water characteristic curve variables[J]. International Journal of Geotechnical Engineering, (3): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/19386362.2017.1344450
|
Tang C S, Shi B, Gu K. 2011. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 19(6): 875-881. http://cn.bing.com/academic/profile?id=2332a210d55ec12bbc15dbcd2bab3b21&encoded=0&v=paper_preview&mkt=zh-cn
|
Tao G L, Li J, Zhuang X S, et al. 2018. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics[J]. Rock and Soil Mechanics, 39(4): 1256-1262. http://d.old.wanfangdata.com.cn/Periodical/ytlx201804014
|
Vanapalli S K, Fredlund D G, Pufahl D E, et al. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33(3): 379-392. doi: 10.1139/t96-060
|
Wang T H, Li Y L, Su L J. 2014. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 36(5): 942-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201405026
|
Yuan Z H, Ni W K, Liu R, et al. 2015. Study of shear strength of unsaturated and undisturbed loess based on suction stress[J]. Journal of Hefei University of Technology(Natural Science), 38(5): 648-653. http://www.en.cnki.com.cn/Article_en/CJFDTotal-HEFE201505016.htm
|
Zhai Q, Rahardjo H. 2012. Determination of soil-water characteristic curve variables[J]. Computers & Geotechnics, 42(42): 37-43. http://cn.bing.com/academic/profile?id=33353e9f45f463f1fe973fa5ead0e98b&encoded=0&v=paper_preview&mkt=zh-cn
|
高游, 孙德安. 2017.单峰和双峰土水特征曲线基本参数的确定[J].岩土工程学报, 39(10): 1884-1891. doi: 10.11779/CJGE201710017
|
贾宝新, 王荷, 周琳力, 等. 2018.辽西风积土路基土水特征曲线试验研究[J].工程地质学报, 26(3): 633-638. doi: 10.13544/j.cnki.jeg.2017-264
|
李同录, 范江文, 习羽, 等. 2019.击实黄土孔隙结构对土水特征的影响分析[J].工程地质学报, 27(5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045
|
李云峰. 1994.黄土渗透性与空隙性关系的研究[M].北京:地质出版社.
|
石振明, 刘巍然, 彭铭, 等. 2018.网纹红土土水特征曲线试验研究及其在边坡稳定性评价中的应用[J].工程地质学报, 26(1): 164-171. doi: 10.13544/j.cnki.jeg.2018.01.018
|
唐朝生, 施斌, 顾凯. 2011.土中水分的蒸发过程试验研究[J].工程地质学报, 19(6): 875-881. doi: 10.3969/j.issn.1004-9665.2011.06.012
|
陶高梁, 李进, 庄心善, 等. 2018.利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率[J].岩土力学, 39(4): 1256-1262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201804014
|
王铁行, 李彦龙, 苏立君. 2014.黄土表面吸附结合水的类型和界限划分[J].岩土工程学报, 36(5): 942-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201405026
|
袁志辉, 倪万魁, 刘茹, 等. 2015.基于吸应力的非饱和黄土抗剪强度研究[J].合肥工业大学学报(自然科学版), 38 (5): 648-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfgydxxb201505016
|