Issue 1
Feb 2020
Turn off MathJax
Article Contents
ZENG Kaifeng, LIU Huabei. A MODIFIED DUNCAN-CHANG E-B MODEL WITH PARTICLE BREAKAGE FOR CALCAREOUS SAND[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 94-102. doi: 10.13544/j.cnki.jeg.2019-218
Citation: ZENG Kaifeng, LIU Huabei. A MODIFIED DUNCAN-CHANG E-B MODEL WITH PARTICLE BREAKAGE FOR CALCAREOUS SAND[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 94-102. doi: 10.13544/j.cnki.jeg.2019-218

A MODIFIED DUNCAN-CHANG E-B MODEL WITH PARTICLE BREAKAGE FOR CALCAREOUS SAND

doi: 10.13544/j.cnki.jeg.2019-218
  • Received Date: 03 Jun 2019
  • Rev Recd Date: 18 Oct 2019
  • Publish Date: 25 Feb 2020
  • Particles breakage under normal stress levels distinguishes calcareous sand from other sands and is one of the important properties of calcareous sands. Due to particle breakage, the mechanical behavior of calcareous sands cannot be well simulated using the traditional constitutive models. Therefore, based on the Duncan-Chang E-B model, this paper proposes a constitutive model that can be used for calcareous sands by considering particle breakage. The specific method is as follows. Firstly, this paper uses the relative breakage Br proposed by Hardin to measure the degree of particle breakage. Moreover, the influence of particle breakage on Duncan-Chang model parameters including internal friction angle, secant modulus E50 and bulk modulus B is obtained. Then, the relative breakage Br, which cannot be directly determined in each state, is related to the determinable stress-strain state by the relationship between particle breakage and input energy. Finally, a modified Duncan-Chang E-B model for calcareous sand considering particle breakage is proposed in this paper. In order to verify the accuracy and applicability of the model, this model is used to simulate the triaxial drainage behavior of calcareous sands with four particle sizes. It is shown that the simulation results agree well with the experimental ones, and the modified model is significantly better than the conventional Duncan-Chang E-B model in the case of large particle breakage.

     

  • loading
  • Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498.
    Duncan J M, Byme P, Wong K S, et al. 1980. Strength, stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses[D]. California: University of California, Berkeley.
    Duncan J M, Chang C Y. 1970. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soils Mechanies and Foundation Division, 96(5): 1629-1653. http://cn.bing.com/academic/profile?id=25450e000029ab1a7b8378ae2ba95528&encoded=0&v=paper_preview&mkt=zh-cn
    Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    Jia Y, Xu B, Cai S C, et al. 2017. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, 17(10): 4017085. doi: 10.1061/(ASCE)GM.1943-5622.0000977
    Lade P V, Yamamuro J A, Bopp P A. 1996. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
    Lee K L, Farhoomand I. 1967. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 4(1): 68-86. doi: 10.1139/t67-012
    Liu C Q, Yang Z Q, Wang R. 1995. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 16(4): 74-84. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX504.010.htm
    Liu H B, Zou D G. 2013. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, 139(5): 606-615. doi: 10.1061/(ASCE)EM.1943-7889.0000513
    Marsal R J. 1967. Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 93(2): 27-43. http://cn.bing.com/academic/profile?id=a9db983879a2aea2cbadb5e58f9e35aa&encoded=0&v=paper_preview&mkt=zh-cn
    Sun D A, Huang W X, Sheng D C, et al. 2007. An elastoplastic model for granular materials exhibiting particle crushing[J]. Key Engineering Materials, 340-341 : 1273-1278. doi: 10.4028/www.scientific.net/KEM.340-341.1273
    Wang G, Ye Q G, Zha J J. 2018. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 40(5): 802-810. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201805004
    Wang R, Sun J Z. 2002. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 33(7): 75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200207013
    Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs--Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27(1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Weng Y L. 2017. Research on shear strength and influence mechanism of calcareous sand[D]. Nanning: Guangxi University.
    Wu J P, Chu Y, Lou Z G. 1997. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 19(5): 49-55. http://cn.bing.com/academic/profile?id=78411f49ecc9f2fd6fea6dc6098def16&encoded=0&v=paper_preview&mkt=zh-cn
    Xu Y F. 2018. PFC2D simulation of rockfill shear strength based on particle fragementation[J]. Journal of Engineering Geology, 26(6): 1409-1414.
    Yu F W. 2017. Particle breakage and the drained shear behavior of sands[J]. International Journal of Geomechanics, 17(8): 4017041. doi: 10.1061/(ASCE)GM.1943-5622.0000919
    Zhang J M. 2004. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
    Zhang J M, Zhang L, Liu H, et al. 2008. Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (S1): 3010-3015. http://d.old.wanfangdata.com.cn/Periodical/hbjzkjxyxb201804009
    陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变及强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    刘崇权, 杨志强, 汪稔. 1995.钙质土力学性质研究现状与进展[J].岩土力学, 16(4): 74-84. http://www.cnki.com.cn/Article/CJFDTotal-YTLX504.010.htm
    王刚, 叶沁果, 查京京. 2018.珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J].岩土工程学报, 40(5): 802-810. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201805004
    汪稔, 孙吉主. 2002.钙质砂不排水性状的损伤-滑移耦合作用分析[J].水利学报, 33(7): 75-78. doi: 10.3321/j.issn:0559-9350.2002.07.013
    汪稔, 吴文娟. 2019.珊瑚礁岩土工程地质的探索与研究--从事珊瑚礁研究30a[J].工程地质学报, 27(1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    翁贻令. 2017.钙质土的抗剪强度及其影响机制研究[D].南宁: 广西大学.
    吴京平, 褚瑶, 楼志刚. 1997.颗粒破碎对钙质砂变形及强度特性的影响[J].岩土工程学报, 19(5): 49-55. doi: 10.3321/j.issn:1000-4548.1997.05.008
    徐永福. 2018.基于颗粒破碎的粗粒土剪切强度的模拟分析[J].工程地质学报, 26(6): 1409-14144. doi: 10.13544/j.cnki.jeg.2017-432
    张家铭. 2004.钙质砂基本力学性质及颗粒破碎影响研究[D].武汉: 中国科学院武汉岩土力学研究所.
    张家铭, 张凌, 刘慧, 等. 2008.钙质砂剪切特性试验研究[J].岩石力学与工程学报, 27 (S1): 3010-3015. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2008S1065.htm
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(205) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return