Citation: | Liu YJ,Wu P,An G,et al.Research advances on the techniques for diagnosing burn wound depth[J].Chin J Burns Wounds,2022,38(5):481-485.DOI: 10.3760/cma.j.cn501120-20210518-00195. |
[1] |
XueEY,ChandlerLK,VivianoSL,et al.Use of FLIR ONE smartphone thermography in burn wound assessment[J].Ann Plast Surg,2018,80(4 Suppl 4):S236-238.DOI: 10.1097/SAP.0000000000001363.
|
[2] |
PromnyD,BillnerM,ReichertB.Objektive tiefenbestimmung von verbrennungen der hand[J].Handchir Mikrochir Plast Chir,2019,51(5):362-366.DOI: 10.1055/a-0991-7869.
|
[3] |
GreenHA,BuaD,AndersonRR,et al.Burn depth estimation using indocyanine green fluorescence[J].Arch Dermatol,1992,128(1):43-49.
|
[4] |
SheridanRL,SchomakerKT,LucchinaLC,et al.Burn depth estimation by use of indocyanine green fluorescence: initial human trial[J].J Burn Care Rehabil,1995,16(6):602-604.DOI: 10.1097/00004630-199511000-00007.
|
[5] |
WongkietkachornA,SurakunpraphaP,WinaikosolK,et al.Indocyanine green dye angiography as an adjunct to assess indeterminate burn wounds: a prospective, multicentered, triple-blinded study[J].J Trauma Acute Care Surg,2019,86(5):823-828.DOI: 10.1097/TA.0000000000002179.
|
[6] |
MajlesaraA,GolrizM,HafeziM,et al.Indocyanine green fluorescence imaging in hepatobiliary surgery[J].Photodiagnosis Photodyn Ther,2017,17:208-215.DOI: 10.1016/j.pdpdt.2016.12.005.
|
[7] |
HuQ,WangK,QiuL.6-Aminocaproic acid as a linker to improve near-infrared fluorescence imaging and photothermal cancer therapy of PEGylated indocyanine green[J].Colloids Surf B Biointerfaces,2021,197:111372.DOI: 10.1016/j.colsurfb.2020.111372.
|
[8] |
谢小明.吲哚菁绿荧光血管造影在颅内动脉瘤手术中的应用[D].长沙:中南大学,2014. |
[9] |
纪晓峰.烧伤创面深度的诊断技术和方法[J].继续医学教育,2007,21(13):15-20.DOI: 10.3969/j.issn.1004-6763.2007.13.003.
|
[10] |
HoeksemaH,Van de SijpeK,TonduT,et al.Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn[J].Burns,2009,35(1):36-45.DOI: 10.1016/j.burns.2008.08.011.
|
[11] |
JanSN,KhanFA,BashirMM,et al.Comparison of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burn wounds[J].Burns,2018,44(2):405-413.DOI: 10.1016/j.burns.2017.08.020.
|
[12] |
AsifM,ChinAGM,LagzielT,et al.The added benefit of combining Laser Doppler Imaging with clinical evaluation in determining the need for excision of indeterminate-depth burn wounds[J].Cureus,2020,12(6):e8774.DOI: 10.7759/cureus.8774.
|
[13] |
ClaesK,HoeksemaH,VynckeT,et al.Evidence based burn depth assessment using laser-based technologies: where do we stand?[J].J Burn Care Res,2021,42(3):513-525.DOI: 10.1093/jbcr/iraa195.
|
[14] |
HoeksemaH,BakerRD,HollandAJ,et al.A new, fast LDI for assessment of burns: a multi-centre clinical evaluation[J].Burns,2014,40(7):1274-1282.DOI: 10.1016/j.burns.2014.04.024.
|
[15] |
KaiserM,YafiA,CinatM,et al.Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities[J].Burns,2011,37(3):377-386.DOI: 10.1016/j.burns.2010.11.012.
|
[16] |
CharuvilaS,SinghM,CollinsD,et al.A comparative evaluation of spectrophotometric intracutaneous analysis and laser Doppler imaging in the assessment of adult and paediatric burn injuries[J].J Plast Reconstr Aesthet Surg,2018,71(7):1015-1022.DOI: 10.1016/j.bjps.2018.03.014.
|
[17] |
ClaesKEY,HoeksemaH,RobbensC,et al.The LDI enigma, part I: so much proof, so little use[J].Burns,2021,47(8):1783-1792.DOI: 10.1016/j.burns.2021.01.014.
|
[18] |
PonticorvoA,BurmeisterDM,RowlandR,et al.Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI)[J].Lasers Surg Med,2017,49(3):293-304.DOI: 10.1002/lsm.22647.
|
[19] |
HongJ,WangY,ChenX,et al.Fluctuations of temporal contrast in laser speckle imaging of blood flow[J].Opt Lett,2018,43(21):5214-5217.DOI: 10.1364/OL.43.005214.
|
[20] |
CrouzetC,NguyenJQ,PonticorvoA,et al.Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging[J].Burns,2015,41(5):1058-1063.DOI: 10.1016/j.burns.2014.11.018.
|
[21] |
ZhengKJ,MiddelkoopE,StoopM,et al.Validity of laser speckle contrast imaging for the prediction of burn wound healing potential[J].Burns,2022,48(2):319-327.DOI: 10.1016/j.burns.2021.04.028.
|
[22] |
粘永健,陈志强,薛冬冬,等.烧伤深度诊断技术研究进展[J].中华烧伤杂志,2016,32(11):698-701.DOI: 10.3760/cma.j.issn.1009-2587.2016.11.014.
|
[23] |
MirdellR,FarneboS,SjöbergF,et al.Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds[J].Burns,2018,44(1):90-98.DOI: 10.1016/j.burns.2017.06.010.
|
[24] |
MirdellR,FarneboS,SjöbergF,et al.Interobserver reliability of laser speckle contrast imaging in the assessment of burns[J].Burns,2019,45(6):1325-1335.DOI: 10.1016/j.burns.2019.01.011.
|
[25] |
BriersD,DuncanDD,HirstE,et al.Laser speckle contrast imaging: theoretical and practical limitations[J].J Biomed Opt,2013,18(6):066018.DOI: 10.1117/1.JBO.18.6.066018.
|
[26] |
LindahlF,TesselaarE,SjöbergF.Assessing paediatric scald injuries using Laser Speckle Contrast Imaging[J].Burns,2013,39(4):662-666.DOI: 10.1016/j.burns.2012.09.018.
|
[27] |
KrezdornN,LimbourgA,PaprottkaFJ,et al.Assessing burn depth in tattooed burn lesions with LASCA imaging[J].Ann Burns Fire Disasters,2016,29(3):223-227.
|
[28] |
ChenH,MiaoP,BoB,et al.A prototype system of portable laser speckle imager based on embedded graphics processing unit platform[J].Annu Int Conf IEEE Eng Med Biol Soc,2019,2019:3919-3922.DOI: 10.1109/EMBC.2019.8857273.
|
[29] |
贲驰,李海航,刘彤,等.人工智能技术辅助烧伤深度诊断的研究进展[J].中华烧伤杂志,2020,36(3):244-246.DOI: 10.3760/cma.j.cn501120-20190403-00162.
|
[30] |
WangG,LiW,ZuluagaMA,et al.Interactive medical image segmentation using deep learning with image-specific fine tuning[J].IEEE Trans Med Imaging,2018,37(7):1562-1573.DOI: 10.1109/TMI.2018.2791721.
|
[31] |
圣文顺,孙艳文.卷积神经网络在图像识别中的应用[J].软件工程,2019,22(2):13-16.DOI: 10.19644/j.cnki.issn2096-1472.2019.02.004.
|
[32] |
何志友,王元,张丕红,等.基于卷积神经网络的人工智能烧伤深度识别模型的建立及测试效果[J].中华烧伤杂志,2020,36(11):1070-1074.DOI: 10.3760/cma.j.cn501120-20190926-00385.
|
[33] |
CirilloMD,MirdellR,SjöbergF,et al.Time-independent prediction of burn depth using deep convolutional neural networks[J].J Burn Care Res,2019,40(6):857-863.DOI: 10.1093/jbcr/irz103.
|
[34] |
WangY,KeZ,HeZ,et al.Real-time burn depth assessment using artificial networks: a large-scale, multicentre study[J].Burns,2020,46(8):1829-1838.DOI: 10.1016/j.burns.2020.07.010.
|
[35] |
PanSC,TsaiYH,ChuangCC,et al.Preliminary assessment of burn depth by paper-based ELISA for the detection of angiogenin in burn blister fluid-a proof of concept[J].Diagnostics (Basel),2020,10(3):127.DOI: 10.3390/diagnostics10030127.
|
[36] |
OwdaAY,SalmonN,ShyloS,et al.Assessment of bandaged burn wounds using porcine skin and millimetric radiometry[J].Sensors (Basel),2019,19(13):2950.DOI: 10.3390/s19132950.
|