Volume 58 Issue 24
Dec 2022
Turn off MathJax
Article Contents
LAI Tao, PENG Xiaoqiang, XU Chao, DAI Yifan, HU Hao, LIU Junfeng. Single Geometric Error Model of 3-axis Measurement Machine Based on Topological Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 10-19. doi: 10.3901/JME.2022.24.010
Citation: LAI Tao, PENG Xiaoqiang, XU Chao, DAI Yifan, HU Hao, LIU Junfeng. Single Geometric Error Model of 3-axis Measurement Machine Based on Topological Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 10-19. doi: 10.3901/JME.2022.24.010

Single Geometric Error Model of 3-axis Measurement Machine Based on Topological Structure

doi: 10.3901/JME.2022.24.010
  • Received Date: 12 May 2022
  • Rev Recd Date: 25 Sep 2022
  • Available Online: 07 Mar 2024
  • Issue Publish Date: 20 Dec 2022
  • Based on the rigid body model and small angle assumption, the traditional geometric error model uses a homogeneous transfer matrix (HTM) to establish the volumetric error of a machine tool. Each geometric error will produce a corresponding volumetric error at the corresponding position, but the HTM ignores the influence mechanism of each geometric error on the volumetric error. In order to clearly express the influence mechanism and include more synthesis position variables, a single geometric error model based on the topological sturcture of machine was established. Special emphasis is placed on the relationship between the anglur error and Abbe error. The effect ratio is analysed using the single geometric error model, the large-ratio geometric error is measured and compensated. The results show that the accuracy of the measurement machine is improved by the compensating. The flat accuracy of ϕ150 mm is measured at 344.32 nm, and the concave accuracy of ϕ60 mm is measured at 161.74 nm. The surface maps measured by the coordinate machine are similar to the surface maps measured by interferometer. The establishment process of the proposed error model was simple, which was helpful for understanding the influence mechanism of the angulr error on the Abbe error. The methods presented herin can be applied to design machine tools and improve the accuracy of measurement machine.

     

  • loading
  • [1]
    LEE K, YANG S H. Measurement and verification of position independent geometric errors of a five-axis machine tool using a double ball-bar[J]. International Journal of Machine Tools & Manufacture, 2013, 70: 45-52.
    [2]
    张国雄. 三坐标测量机[M]. 天津: 天津大学出版社, 1999.

    ZHANG Guoxiong. Coordinate measuring machine[M]. Tianjin: Tianjin University Press, 1999.
    [3]
    张国雄. 三坐标测量机的发展趋势[J]. 中国机械工程, 2000, 11(1): 222-226. doi: 10.3321/j.issn:1004-132X.2000.01.054

    ZHANG Guoxiong. The development tendency of coordinate measuring machines[J]. China Mechanical Engineering, 2000, 11(1): 222-226. doi: 10.3321/j.issn:1004-132X.2000.01.054
    [4]
    LEETE D L. Automatic compensation of alignment errors in machine-tool[J]. International Journal of Machine Tools & Manufacture, 1961, 1: 293-324.
    [5]
    FRENCH D, HUMPHRIES S H. Compensation for backlash and alignment errors in a numerically controlled machine-tool by a digital computer program[C]// M. T. D. R. Conf. Proc., 1968, 8: 707-726.
    [6]
    HOCKEN R, SIMPSON J A, BORCHARDT B, et al. Three dimensional metrology[J]. Annals of the CIRP, 1977, 1(26): 403-408.
    [7]
    FERREIRA P M. An analytical quadratic model for the geometric errors of a machine tool[J]. Journal of Manufacturing System, 1986, 1(5): 51-62.
    [8]
    ELSHCHNAWY A K, HAM I. Performance improvement of in coordinate measuring machines by error[J]. Manufacturing Systems, 1989, 2(9): 151-158.
    [9]
    KIM K, KIM M K. Volumetric accuracy analysis based generalized geometric error model in multi-axes machine tools[J]. Mech. Mach. Theory, 1991, 2(26): 207-219.
    [10]
    孙天慧, 田文杰, 王辉, 等. 基于球杆仪的三坐标并联动力头运动学标定方法[J]. 机械工程学报, 2012, 48(5): 22-27. http://www.cjmenet.com.cn/CN/Y2012/V48/I5/22

    SUN Tianhui, TIAN Wenjie, WANG Hui, et al. Kinematic Calibration of 3-DOF spindle head using double-ball bar[J]. Journal of Mechanical Engineering, 2012, 48(5): 22-27. http://www.cjmenet.com.cn/CN/Y2012/V48/I5/22
    [11]
    朱嘉, 李醒飞, 谭文斌, 等. 基于激光干涉仪的测量机几何误差检定技术[J]. 机械工程学报, 2010, 46(10): 25-30. http://www.cjmenet.com.cn/CN/Y2010/V46/I10/25

    ZHU Jia, LI Xingfei, TAN Wenbin, et al. Method of geometric error detection for measuring machine based on laser interferometer[J]. Journal of Mechanical Engineering, 2010, 46(10): 25-30. http://www.cjmenet.com.cn/CN/Y2010/V46/I10/25
    [12]
    ZHANG Guoxiong, HOCKEN R, VEALE R, et al. A displacement method for machine geometry calibration[J]. Annals of CIRP, 1988, 1(37): 515-518.
    [13]
    CHEN Guiquan, YUAN Jingxia, NI Jun. A displacement measurement approach for machine geometric error assessment[J]. International Journal of Machine Tools & Manufacture, 2001, 1(41): 149-161.
    [14]
    马锡琪, 邓晓京. 数控机床三维运动误差的测量技术及其评价方法[J]. 机械科学与技术, 1994, 4(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX404.022.htm

    MA Xiqi, DENG Xiaojing. Measurement technology and evaluation method of 3D motion error of CNC machine tools[J]. Mechanical Science and Technology, 1994, 4(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX404.022.htm
    [15]
    FU Guoqiang, FU Jianzhong, SHEN Hongyao, et al. NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 1-16.
    [16]
    田文杰, 牛文铁, 常文芬, 等. 数控机床几何精度溯源方法研究[J]. 机械工程学报, 2014, 50(7): 128-135. http://www.cjmenet.com.cn/CN/Y2014/V50/I7/128

    TIAN Wenjie, NIU Wentie, CHANG Wenfen, et al. Research on geometric accuracy traceability method of CNC machine tools[J]. Journal of Mechanical Engineering, 2014, 50 (7): 128-135. http://www.cjmenet.com.cn/CN/Y2014/V50/I7/128
    [17]
    李欢玲, 吴洪涛. 三坐标数控机床的几何误差参数辨识[J]. 机械制造, 2008, 46(4): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG200804004.htm

    LI Huanling, WU Hongtao. Geometric error parameter identification of three-dimensional CNC machine tools [J]. Machine Manufacturing, 2008, 46 (4): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG200804004.htm
    [18]
    张娟, 高锋阳, 蒋兆远. 基于激光干涉仪的数控测量机几何误差辨识与补偿[J]. 兰州交通大学报, 2009, 28(6): 46-49.

    ZHANG Juan, GAO Fengyang, JIANG Zhaoyuan. Geometric error identification and compensation of CNC measuring machine based on laser interferometer[J]. Journal of Lanzhou Jiaotong University, 2009, 28 (6): 46-49.
    [19]
    ZHANG Guoxiong. A study on the Abbe principle and Abbe error[J]. CIRP Annals-Manufacturing Technology, 1989, 38(1): 525-528.
    [20]
    XIE Guangping, FANG Zhongyan, WANG Dongsheng. Abbe error real-time correction system[J]. Aviation Measurement Technology, 1996, 39(4): 6-9.
    [21]
    FAN Kuangchao. Development of a small 3-axis angular sensor for real-time Abbe error compensation on numerically controlled machine tools[C]// Proceedings of the 36th International MATADOR Conference. Springer, London, 2010: 317-321.
    [22]
    石照耀, 张斌, 费业泰. 阿贝原则再认识[J]. 仪器仪表学报, 2012, 33(5): 1128-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201205025.htm

    SHI Zhaoyao, ZHANG Bin, FEI Yetai. Recognition of Abbe principle[J]. Acta Instrumenta Sinica, 2012, 33(5): 1128-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201205025.htm
    [23]
    ZHANG Jiankun, HU Penghao, MA Xiaoqing. Analysis of Abbe error in 3-PUU parallel measuring machine[J]. Chinese Scientific Paper, 2015, 10(4): 471-474.
    [24]
    VAHEBI M, AREZOO B. Accuracy improvement of volumetric error modeling in CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2243-2257.
    [25]
    LI Zihan, FENG Wenlong, YANG Jianguo. An investigation on modeling and compensation Of synthetic geometric errors on large machine tools based on moving least squares method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(3): 412-427.
    [26]
    HUANG Y B, FAN Kuangchao, LOU Zhifeng. A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles[J]. International Journal of Machine Tools & Manufacture, 2020, 151: 103527.
    [27]
    ZHOU Zhixiong, ZHOU Qinyuan, REN Yinghui. Research status and development trend of complex surface machining technology[J]. Journal of Mechanical Engineering, 2010, 46 (17): 105-113.
    [28]
    SPANN M, WIDDERSHOVEN I. Isara 400 ultra-precision CMM[C]// Proceedings of SPIE, 2011, 8169: 81690T.
    [29]
    RUIJL T. Ultra-precision coordinate measuring machine: Design, calibration and error compensation[D]. Eindhoven: Eindhoven University, 2001
    [30]
    RUIJL T. Thermal effects in precision systems: Design considerations, modelling, compensation and validation techniques[J]. Diamond Light Source Proceedings, 2011, 1: MEDSI-6.
    [31]
    BUKKEMS B, RUIJL T, SIMONS J. Vibration isolation and damping in high precision equipment[C]//Fourth European Seminar on Precision Optics Manufacturing. International Society for Optics and Photonics, 2017, 10326: 103260D.
    [32]
    SCHMIDT I, HAUSOTTE T, GERHARDT U, et al. Investigations and calculations into decreasing the uncertainty of a nanopositioning and nanomeasuring machine (NPM-Machine)[J]. Measurement Science & Technology, 2017, 18: 482-486.
    [33]
    JAGER G, MANSKE E, HAUSOTTE T, et al. The metrological basis and operation of nanopositioning and nanomeasuring machine NMM-1[J]. Techisches Messen: Sensore, Gerate, Systeme, 2009, 76(5): 227-234.
    [34]
    HAUSOTTE T. Nanopositioning and nanomeasuring machine[D]. Ilmenau: Ilmenau University, 2002.
    [35]
    HUANG Qiangxian, YU Fuling, GONG Ermin, et al. Zero Abbe error nano CMM worktable and error analysis[J]. Optical precision engineeriguanng, 2013, 21(3): 664-671.
    [36]
    VEGHEL van M G A, BERGMANS R H, NIEUWENKAMP H J. Traceability of a linescale based micro-CMM[C]// Proceedings of the 10th Anniversary International Conference of the European Society for Precision Engineering and Nanotechnology, Zurich, Switzerland, 2008: 263-267.
    [37]
    HENSELMANS R, CACACE L A, KRAMER G F Y, et al. The NANOMEFOS non-contact measurement machine for freeform optics[J]. Precision Engineering, 2011, 35(4): 607-624.
    [38]
    TSUTSUMI H, YOSHIZUMI K, TAKEUCHI H. Ultrahighly accurate 3D profilometer[C]// SPIE: Optical Design and Testing Ⅱ. International Society for Optics and Photonics, 2005, 5638: 387-394.
    [39]
    YU L, BRAND U, MUENCHENHAGEN R. Microsystem metrology—The PTB special CMM [C/CD]// Proc. of International Symposium on Precision Mechanical Measurements, 2002.
    [40]
    LEWIS A, OLDFIELD S, PEGGS G N. The NPL Small CMM-3-D measurement of small features[C/CD]// Laser Metrology and Machine Performance, 2001.
  • 加载中

Catalog

    Figures(18)

    Article Metrics

    Article views(11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return