| Citation: | LI Ke, QI Yang, SU Lei, GU Jiefei, SU Wensheng. Visual Inspection of Steel Surface Defects Based on Improved Auxiliary Classification Generation Adversarial Network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 32-40. doi: 10.3901/JME.2022.24.032 | 
 
	                | [1] | LUO Q, FANG X, LIU L, et al. Automated visual defect detection for flat steel surface: A survey[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(3): 626-644. doi:  10.1109/TIM.2019.2963555 | 
| [2] | SONG G, SONG K, YAN Y. EDRNet: Encoder-decoder residual network for salient object detection of strip steel surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9709-9719. doi:  10.1109/TIM.2020.3002277 | 
| [3] | HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493-1504. | 
| [4] | LI H, ZHU B, CHEN Z, et al. Realtime in-plane displacements tracking of the precision positioning stage based on computer micro-vision[J]. Mechanical Systems and Signal Processing, 2019, 124: 111-123. doi:  10.1016/j.ymssp.2019.01.046 | 
| [5] | WANG H, ZHANG J, TIAN Y, et al. A simple guidance template-based defect detection method for strip steel surfaces[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2798-2809. doi:  10.1109/TII.2018.2887145 | 
| [6] | FU G, SUN P, ZHU W, et al. A deep-learning-based approach for fast and robust steel surface defects classification[J]. Optics and Lasers in Engineering, 2019, 121: 397-405. doi:  10.1016/j.optlaseng.2019.05.005 | 
| [7] | ZHENG X, ZHENG S, KONG Y, et al. Recent advances in surface defect inspection of industrial products using deep learning techniques[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 35-58. doi:  10.1007/s00170-021-06592-8 | 
| [8] | ZHANG S, ZHANG Q, GU J, et al. Visual inspection of steel surface defects based on domain adaptation and adaptive convolutional neural network[J]. Mechanical Systems and Signal Processing, 2021, 153: 107541. doi:  10.1016/j.ymssp.2020.107541 | 
| [9] | 姜洪权, 贺帅, 高建民, 等. 一种改进卷积神经网络模型的焊缝缺陷识别方法[J]. 机械工程学报, 2020, 56(8): 235-242. doi:  10.3901/JME.2020.08.235 JIANG Hongquan, HE Shuai, GAO Jianmin, et al. An improved convolutional neural network for weld defect recognition[J]. Journal of Mechanical Engineering, 2020, 56(8): 235-242. doi:  10.3901/JME.2020.08.235 | 
| [10] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680. | 
| [11] | JIN Q, LIN R, YANG F. E-WACGAN: Enhanced generative model of signaling data based on WGAN-GP and ACGAN[J]. IEEE Systems Journal, 2019, 14(3): 3289-3300. | 
| [12] | 黄南天, 杨学航, 蔡国伟, 等. 采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J]. 中国电机工程学报, 2020, 40(2): 563-573. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202002018.htm HUANG Nantian, YANG Xuehang, CAI Guowei, et al. A deep adversarial diagnosis method for wind turbine main bearing fault with imbalanced small sample scenarios[J]. Proceedings of the CSEE, 2020, 40(2): 563-573. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202002018.htm | 
| [13] | SUN G, DING S, SUN T, et al. SA-CapsGAN: Using capsule networks with embedded self-attention for generative adversarial network[J]. Neurocomputing, 2021, 423(5): 399-406. | 
| [14] | BEKKER J, DAVIS J. Learning from positive and unlabeled data: A survey[J]. Machine Learning, 2020, 109(4): 719-760. doi:  10.1007/s10994-020-05877-5 | 
| [15] | GUO T, XU C, HUANG J, et al. On positive-unlabeled classification in GAN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 8382-8390. | 
| [16] | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201703001.htm WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201703001.htm | 
| [17] | LIU F, XU M, LI G, et al. Adversarial symmetric GANs: Bridging adversarial samples and adversarial networks[J]. Neural Networks, 2021, 133: 148-156. doi:  10.1016/j.neunet.2020.10.016 | 
| [18] | DONG H, SONG K, HE Y, et al. PGA-Net: Pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7448-7458. doi:  10.1109/TII.2019.2958826 | 
| [19] | LI X, ZHANG W, DING Q, et al. Multi-Layer domain adaptation method for rolling bearing fault diagnosis[J]. Signal Processing, 2019, 157: 180-197. | 
| [20] | LI X, CHANG D, MA Z, et al. OSLNet: Deep small-sample classification with an orthogonal softmax layer[J]. IEEE Transactions on Image Processing, 2020, 29: 6482-6495. | 
| [21] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// Precup D, Teh YW (eds) Proceedings of the 34th International Conference on Machine Learning, PMLR, International Convention Centre, Sydney, Australia. Proceedings of Machine Learning Research, 2017, 70: 214-223. | 
| [22] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 2017 Advances in Neural Information Processing Systems. Long Beach, CA, USA, Curran Associates, Inc, 2017: 5767-5777. | 
| [23] | TRAN N T, TRAN V H, NGUYEN N B, et al. On data augmentation for GAN training[J]. IEEE Transactions on Image Processing, 2021, 30: 1882-1897. | 
