Volume 58 Issue 24
Dec 2022
Turn off MathJax
Article Contents
LI Honggang, ZHANG Chao, CAO Junchao, ZHOU Dian, ZHANG Meihe. Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 121-144. doi: 10.3901/JME.2022.24.121
Citation: LI Honggang, ZHANG Chao, CAO Junchao, ZHOU Dian, ZHANG Meihe. Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 121-144. doi: 10.3901/JME.2022.24.121

Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries

doi: 10.3901/JME.2022.24.121
  • Received Date: 31 Jan 2022
  • Rev Recd Date: 20 Jul 2022
  • Available Online: 07 Mar 2024
  • Issue Publish Date: 20 Dec 2022
  • Lithium-ion batteries (LIBs) are widely used as the main power source for new energy equipment such as electric vehicles and electrical aircraft with their excellent electrochemical energy storage and cycling performance. However, safety issues such as structural failure, internal short circuit and thermal runaway caused by external impact, collision and other loads have severely restricted the development and further application of LIBs. The structural characteristics and mechanical abuse test methods of LIBs is summarized in detail, and multi-field coupling failure mechanism of LIBs from mechanical failure to internal short circuit and thermal runaway under mechanical abuse is expounded. On this basis, the research progress of domestic and foreign scholars in the field of modeling methods for collision safety of lithium-ion batteries in recent years is reviewed systematically. And the research status of modeling methods from aspects of materials constitutive modeling, mechanical modeling and simulation of battery cell, and multi-field coupling modeling methods is summarized. The characteristics, applicability and limitation of various modeling methods are sorted out, and the key issues such as modeling method, simulation accuracy and efficiency are discussed. Finally, the bottleneck problems and further development trend in modeling methods for collision safety of lithium-ion batteries are discussed and prospected. A systematic reference and guidance for the study of crash failure mechanism, modeling and simulation, and safety design of lithium-ion batteries can be provided.

     

  • loading
  • [1]
    DENG J, BAE C, DENLINGER A, et al. Electric vehicles batteries: Requirements and challenges[J]. Joule, 2020, 4(3): 511-515. doi: 10.1016/j.joule.2020.01.013
    [2]
    International Energy Agency. Global EV outlook 2020[EB/OL]. [2021-11-03]. http://www.iea.org.
    [3]
    朱晓庆, 王震坡, WANG H, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. doi: 10.3901/JME.2020.14.091

    ZHU Xiaoqing, WANG Zhenpo, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. doi: 10.3901/JME.2020.14.091
    [4]
    GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem. Mat., 2010, 22(3): 587-603. doi: 10.1021/cm901452z
    [5]
    XIONG R, MA S, LI H, et al. Towards a safer battery management system: A critical review on diagnosis of battery short circuit[J]. iScience, 2020, 23(4): 101010. doi: 10.1016/j.isci.2020.101010
    [6]
    DENG J, BAE C, MARCICKI J, et al. Safety modeling and testing of lithium-ion batteries in electrified vehicles[J]. Nature Energy, 2018, 3: 261-266. doi: 10.1038/s41560-018-0122-3
    [7]
    LAI X, JIN C, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35(3): 470-499.
    [8]
    LIU B, JIA Y, YUAN C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review[J]. Energy Storage Materials 2020, 24: 85-112. doi: 10.1016/j.ensm.2019.06.036
    [9]
    SUN P, HUANG X, BISSCHOP R, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410. doi: 10.1007/s10694-019-00944-3
    [10]
    许骏, 王璐冰, 刘冰河. 锂离子电池机械完整性研究现状和展望[J]. 汽车安全与节能学报, 2017, 8(1): 15-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201701002.htm

    XU Jun, WANG Lubing, LIU Binghe. Review for mechanical integrity of lithium-ion battery[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 15-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201701002.htm
    [11]
    DOUGHTY D H, PESARAN A. Vehicle battery safety roadmap guidance[R]. NREL/SR-5400-54404, 2012.
    [12]
    TURNER J A, ALLU S, GORTI S, et al. Crash models for advanced automotive batteries[R]. ORNL/TM-2015/366, 2015.
    [13]
    汽车之家. 与金属物碰撞造Tesla model S起火[EB/OL]. [2021-11-03]. http://www.autohome.com.cn/news/201310/630775.html

    Auto home. Collision with metal objects causes Tesla model Sfire[EB/OL]. [2021-11-03]. http://www.autohome.com.cn/news/201310/630775.html
    [14]
    WANG H, KUMAR A, SIMUNOVIC S, et al. Progressive mechanical indentation of large-format Li-ion cells[J]. Journal of Power Sources, 2017, 341: 156-164. doi: 10.1016/j.jpowsour.2016.11.094
    [15]
    LAMB J, ORENDORFF, C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523. doi: 10.1016/j.jpowsour.2014.10.081
    [16]
    KALNAUS S, WANG H, WATKINS T R, et al. Features of mechanical behavior of EV battery modules under high deformation rate[J]. Extreme Mechanics Letters, 2019, 32: 100550. doi: 10.1016/j.eml.2019.100550
    [17]
    WANG H, LARA-CURZIO E, RULE E T, et al. Mechanical abuse simulation and thermal runaway risks of large format li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. doi: 10.1016/j.jpowsour.2016.12.111
    [18]
    WANG H, SIMUNOVIC S, MALEK H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit[J]. Journal of Power Sources, 2016, 306: 424-430. doi: 10.1016/j.jpowsour.2015.12.026
    [19]
    ZHU X, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study[J]. Journal of Power Sources, 2020, 455: 227939. doi: 10.1016/j.jpowsour.2020.227939
    [20]
    LAMB J, ORENDORFF C J. Evaluation of mechanical abuse techniques in lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 189-196. doi: 10.1016/j.jpowsour.2013.08.066
    [21]
    ORENDORFF C J, LAMB J, STEELE L A M, et al. Propagation testing multi-cell batteries[R]. SAND2014-17053, 2014.
    [22]
    ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113. doi: 10.1016/j.jpowsour.2015.04.162
    [23]
    ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. A representative-sandwich model for simultaneously coupled mechanical-electrical- thermal simulation of a lithium-ion cell under quasi-static indentation tests[J]. Journal of Power Sources, 2015, 298: 309-321. doi: 10.1016/j.jpowsour.2015.08.049
    [24]
    ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Simultaneously coupled mechanical- electrochemical-thermal simulation of lithium-ion cells[J]. ECS Transactions, 2016, 72(24): 9-19. doi: 10.1149/07224.0009ecst
    [25]
    ZHU J, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. doi: 10.1016/j.jpowsour.2017.12.034
    [26]
    SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources, 2012, 220: 360-372. doi: 10.1016/j.jpowsour.2012.07.057
    [27]
    SAHRAEI E, BOSCO E, DIXON B, et al. Microscale failure mechanisms leading to internal short circuit in li-ion batteries under complex loading scenarios[J]. Journal of Power Sources, 2016, 319: 56-65. doi: 10.1016/j.jpowsour.2016.04.005
    [28]
    SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity[J]. Journal of Power Sources, 2012, 201: 307-321. doi: 10.1016/j.jpowsour.2011.10.094
    [29]
    SAHRAEI E, MEIER J, WIERZBICKI T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 247: 503-519. doi: 10.1016/j.jpowsour.2013.08.056
    [30]
    WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells[J]. Journal of Power Sources, 2013, 241: 467-476. doi: 10.1016/j.jpowsour.2013.04.135
    [31]
    李威. 基于精细模型的锂离子电池变形失效研究[D]. 北京: 清华大学, 2019.

    LI Wei. Safety of lithium-ion battery deformation and failure based on detailed modeling[D]. Beijing: Tsinghua University, 2019.
    [32]
    罗海灵. 机械滥用下锂离子软包电池结构失效机理与建模研究[D]. 北京: 清华大学, 2018.

    LUO Hailing. Structural failure mechanism and modelling of lithium-ion battery pouch cell under mechanical abuse[D]. Beijing: Tsinghua University, 2018.
    [33]
    LUO H, XIA Y, ZHOU Q. Mechanical damage in a lithium-ion pouch cell under indentation loads[J]. Journal of Power Sources, 2017, 357: 61-70. doi: 10.1016/j.jpowsour.2017.04.101
    [34]
    LIU Y, XIA Y, ZHOU Q. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: A comprehensive experimental investigation[J]. Energy Storage Materials, 2021, 40: 268-281. doi: 10.1016/j.ensm.2021.05.022
    [35]
    XU J, LIU B, HU D. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016, 6(1): 21829. doi: 10.1038/srep21829
    [36]
    JIA Y, YIN S, LIU B, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading[J]. Energy, 2019, 166: 951-960. doi: 10.1016/j.energy.2018.10.142
    [37]
    XU J, LIU B, WANG L, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing[J]. Engineering Failure Analysis, 2015, 53: 97-110. doi: 10.1016/j.engfailanal.2015.03.025
    [38]
    冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.

    FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
    [39]
    FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4: 1-28. doi: 10.1016/j.joule.2019.10.011
    [40]
    FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. doi: 10.1016/j.ensm.2017.05.013
    [41]
    REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. doi: 10.1016/j.ensm.2020.10.020
    [42]
    FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. doi: 10.1016/j.apenergy.2019.04.009
    [43]
    ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. doi: 10.1016/j.jpowsour.2015.11.100
    [44]
    ZHAO Y, STEIN P, BAI Y et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J]. Journal of Power Sources, 2019, 413: 259-283. doi: 10.1016/j.jpowsour.2018.12.011
    [45]
    HORIBA T. Lithium-ion battery systems[J]. Proceedings of the IEEE, 2014, 102(6): 939-950. doi: 10.1109/JPROC.2014.2319832
    [46]
    ZHU J, ZHANG X, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression[J]. Journal of Power Sources, 2016, 336: 332-340. doi: 10.1016/j.jpowsour.2016.10.064
    [47]
    CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. doi: 10.1016/j.jechem.2020.10.017
    [48]
    DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choice[J]. Science, 2011, 334(6058): 928-935. doi: 10.1126/science.1212741
    [49]
    GOODMAN J K S, MILLER J T, KREUZER S, et al. Lithium-ion cell response to mechanical abuse: Three-point bend[J]. Journal of Energy Storage, 2020, 28: 101244. doi: 10.1016/j.est.2020.101244
    [50]
    YAMANAKA T, TAKAGISHI Y, TOZUKA Y, et al. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk[J]. Journal of Power Sources, 2019, 416: 132-140. doi: 10.1016/j.jpowsour.2019.01.055
    [51]
    YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. doi: 10.1016/j.jpowsour.2018.04.092
    [52]
    LIU B, YIN S, XU J. Integrated computation model of lithium-ion battery subject to nail penetration[J]. Applied Energy, 2016, 183: 278-289. doi: 10.1016/j.apenergy.2016.08.101
    [53]
    CHEN X, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact[J]. International Journal of Energy Research, 2019, 43(13): 7421-7432.
    [54]
    XI S, ZHAO Q, CHANG L, et al. The dynamic failure mechanism of a lithium-ion battery at different impact velocity[J]. Engineering Failure Analysis, 2020, 116: 104747. doi: 10.1016/j.engfailanal.2020.104747
    [55]
    CHEN Y, SANTHANAGOPALAN S, BABU V, et al. Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact[J]. Composite Structures, 2019, 218: 50-59. doi: 10.1016/j.compstruct.2019.03.046
    [56]
    ZHANG G, WEI X, TANG X, et al. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110790. doi: 10.1016/j.rser.2021.110790
    [57]
    张明轩. 汽车动力电池系统内短路问题研究[D]. 北京: 清华大学, 2018.

    ZHANG Mingxuan. Research on the internal short circuit problem of the vehicle power battery system[D]. Beijing: Tsinghua University, 2018.
    [58]
    YANG L, LI N, HU L, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor [J]. Acta Mechanica Sinica, 2021, 37(6): 898-904.
    [59]
    HUANG S, DU X, RICHTER M, et al. Understanding li-ion cell internal short circuit and thermal runaway through small, slow and in situ nail penetration[J]. Journal of the Electrochemical Society, 2020, 167(9): 090526. doi: 10.1149/1945-7111/ab8878
    [60]
    HATCHARD T D, TRUSSLER S, DAHN J R. Building a "smart nail" for penetration tests on li-ion cells[J]. Journal of Power Sources, 2014, 247: 821-823. doi: 10.1016/j.jpowsour.2013.09.022
    [61]
    ZHU S, HAN J, PAN T, et al. A novel designed visualized Li-ion battery for in-situ measuring the variation of internal temperature[J]. Extreme Mechanics Letters, 2020, 37: 100707. doi: 10.1016/j.eml.2020.100707
    [62]
    LIU B, DUAN X, YUAN C, et al. Quantifying and modeling of stress-driven short-circuits in lithium-ion batteries in electrified vehicles[J]. Journal of Materials Chemistry A, 2021, 9(11): 7102-7113. doi: 10.1039/D0TA12082K
    [63]
    ZHANG C, XU J, CAO L, et al. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 126-137. doi: 10.1016/j.jpowsour.2017.04.103
    [64]
    WANG L, YIN S, ZHANG C, et al. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 392: 265-273. doi: 10.1016/j.jpowsour.2018.05.007
    [65]
    FADILLAH H, SANTOSA S P, GUNAWAN L, et al. Dynamic high strain rate characterization of lithium-ion Nickel-Cobalt-Aluminum (NCA) battery using split hopkinson tensile/pressure bar methodology[J]. Energies, 2020, 13(19): 5061. doi: 10.3390/en13195061
    [66]
    WANG L, YIN S, YU Z, et al. Unlocking the significant role of shell material for lithium-ion battery safety[J]. Materials & Design, 2018, 160: 601-610.
    [67]
    HALALAY I C, LUKITSCH M J, BALOGH M P, et al. Nanoindentation testing of separators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 238: 469-477. doi: 10.1016/j.jpowsour.2013.04.036
    [68]
    ZHU J, ZHANG X, LUO H, et al. Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests[J]. Applied Energy, 2018, 224: 251-266. doi: 10.1016/j.apenergy.2018.05.007
    [69]
    LUO H, ZHU J, SAHRAEI E, et al. Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings[J]. RSC Advances, 2018, 8(8): 3996. doi: 10.1039/C7RA12382E
    [70]
    CANNARELLA J, LIU X Y, LENG C Z, et al. Mechanical properties of a battery separator under compression and tension [J]. Journal of the Electrochemical Society, 2014, 161(11): 3117-3122. doi: 10.1149/2.0191411jes
    [71]
    ZHANG X, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701. doi: 10.1016/j.jpowsour.2016.07.078
    [72]
    PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. doi: 10.1016/j.jpowsour.2011.05.023
    [73]
    XU J, WANG L, GUAN J, et al. Coupled effect of strain rate and solvent on dynamic mechanical behavior of separator in lithium ion batteries[J]. Materials & Design, 2016, 95: 319-328.
    [74]
    SHEIDAEI A, XIAO X R, HUANG X S, et al. Mechanical behavior of a battery separator in electrolyte solutions[J]. Journal of Power Sources, 2011, 196(20): 8728-8734. doi: 10.1016/j.jpowsour.2011.06.026
    [75]
    AVDEEV I, MARTINSEN M, A FRANCIS. Rate- and temperature dependent material behavior of a multilayer polymer battery separator[J]. Journal of Materials Engineering and Performance, 2014, 23(1): 315-325. doi: 10.1007/s11665-013-0743-4
    [76]
    JI Y, CHEN X, WANG T, et al. Coupled effects of charge-discharge cycles and rates on the mechanical behavior of electrodes of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 30: 101577. doi: 10.1016/j.est.2020.101577
    [77]
    ZHU J, LI W, XIA Y, et al. Testing and modeling the mechanical properties of the granular materials of graphite anode[J]. Journal of the Electrochemical Society, 2018, 165(5): 1160-1168. doi: 10.1149/2.0141807jes
    [78]
    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
    [79]
    HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences, 1948, 193(1033): 281-297.
    [80]
    LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4(1): 16-25.
    [81]
    PAN Z, ZHU J, XU H, et al. Microstructural deformation patterns of a highly orthotropic polypropylene separator of lithium-ion batteries: Mechanism, model, and theory[J]. Extreme Mechanics Letters, 2020, 37: 100705. doi: 10.1016/j.eml.2020.100705
    [82]
    ZHANG Xiaowei. Mechanical behavior of shell casing and separator of lithium-ion battery[D]. Cambridge: Massachusetts Institute of Technology, 2017.
    [83]
    KALNAUS S, WANG Y, LI J, et al. Temperature and strain rate dependent behavior of polymer separator for li-ion batteries[J]. Extreme Mechanics Letters, 2018, 20: 73-80. doi: 10.1016/j.eml.2018.01.006
    [84]
    DOMMELEN J A W, PARKS D M, BOYCE M C, et al. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(3): 519-541. doi: 10.1016/S0022-5096(02)00063-7
    [85]
    LEE S, RUTLEDGE G C. Plastic deformation of semicrystalline polyethylene by molecular simulation[J]. Macromolecules, 2011, 44(8): 3096-3108. doi: 10.1021/ma1026115
    [86]
    XIAO X, WU W, HUANG X. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery[J]. Journal of Power Sources, 2010, 195(22): 7649-7660. doi: 10.1016/j.jpowsour.2010.06.020
    [87]
    SEDIGHIAMIRI A, SENDEN D J A, TRANCHIDA D, et al. A micromechanical study on the deformation kinetics of oriented semicrystalline polymers[J]. Computational Materials Science, 2014, 82: 415-426. doi: 10.1016/j.commatsci.2013.09.068
    [88]
    YAN S, XIAO X, HUANG X, et al. Unveiling the environment-dependent mechanical properties of porous polypropylene separators[J]. Polymer, 2014, 55(24): 6282-6292. doi: 10.1016/j.polymer.2014.09.067
    [89]
    XU H, BAE C. Stochastic 3D microstructure reconstruction and mechanical modeling of anisotropic battery separators[J]. Journal of Power Sources, 2019, 430: 67-73. doi: 10.1016/j.jpowsour.2019.05.021
    [90]
    XU H, ZHU M, MARCICKI J, et al. Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization[J]. Journal of Power Sources, 2017, 345: 137-145. doi: 10.1016/j.jpowsour.2017.02.002
    [91]
    XU H, USSEGLIO-VIRETTA F, KENCH S, et al. Microstructure reconstruction of battery polymer separators by fusing 2D and 3D image data for transport property analysis[J]. Journal of Power Sources, 2020, 480: 229101. doi: 10.1016/j.jpowsour.2020.229101
    [92]
    ZHANG X, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery[J]. Journal of Power Sources, 2015, 280: 47-56. doi: 10.1016/j.jpowsour.2015.01.077
    [93]
    GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells[J]. Journal of Power Sources, 2012, 214: 377-385. doi: 10.1016/j.jpowsour.2012.04.055
    [94]
    ZHU J, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure[J]. International Journal of Plasticity, 2019, 121: 293-311. doi: 10.1016/j.ijplas.2019.06.011
    [95]
    PAN Z, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading[J]. Journal of Energy Storage, 2020, 27: 101016. doi: 10.1016/j.est.2019.101016
    [96]
    WANG L, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset[J]. Journal of Power Sources, 2019, 413: 284-292. doi: 10.1016/j.jpowsour.2018.12.059
    [97]
    LIU B, JIA Y, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21475-21484. doi: 10.1039/C8TA08997C
    [98]
    YUAN C, WANG L, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery[J]. Journal of Power Sources, 2020, 467: 228360. doi: 10.1016/j.jpowsour.2020.228360
    [99]
    KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells[J]. International Journal of Impact Engineering, 2017, 108: 205-216. doi: 10.1016/j.ijimpeng.2017.04.025
    [100]
    ZHU J, LUO H, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading[J]. International Journal of Impact Engineering, 2018, 131: 78-84.
    [101]
    LAI W, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions[J]. Journal of Power Sources, 2014, 248: 789-808. doi: 10.1016/j.jpowsour.2013.09.128
    [102]
    LAI W, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions[J]. Journal of Power Sources, 2014, 245: 609-623. doi: 10.1016/j.jpowsour.2013.06.134
    [103]
    ALI M Y, LAI W, PAN J. Computational models for simulations of lithium-ion battery cells under constrained compression tests[J]. Journal of Power Sources, 2013, 242: 325-340. doi: 10.1016/j.jpowsour.2013.05.022
    [104]
    MEI W, DUAN Q, ZHAO C, et al. Three-dimensional layered electrochemical -thermal model for a lithium-ion pouch cell Part II. The effect of units number on the performance under adiabatic condition during the discharge[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119082. doi: 10.1016/j.ijheatmasstransfer.2019.119082
    [105]
    SAHRAEI E, KAHN M, MEIERC J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading[J]. RSC Advances, 2015, 5(98): 80369-80380. doi: 10.1039/C5RA17865G
    [106]
    WANG W, YANG S, LIN C. Clay-like mechanical properties for the jellyroll of cylindrical lithium-ion cells[J]. Applied Energy, 2017, 196: 249-258. doi: 10.1016/j.apenergy.2017.01.062
    [107]
    WANG W, LI Y, CHENG L, et al. Safety performance and failure prediction model of cylindrical lithium-ion battery[J]. Journal of Power Sources, 2020, 451: 227755. doi: 10.1016/j.jpowsour.2020.227755
    [108]
    WANG W, LI Y, CHENG L, et al. State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse[J]. Applied Energy, 2019, 251: 113365. doi: 10.1016/j.apenergy.2019.113365
    [109]
    LIAN J, WIERZBICKI T, ZHU J, et al. Prediction of shear crack formation of lithium-ion batteries under rod indentation: Comparison of seven failure criteria[J]. Engineering Fracture Mechanics, 2019, 217: 106520. doi: 10.1016/j.engfracmech.2019.106520
    [110]
    XU J, LIU B, WANG X, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies[J]. Applied Energy, 2016, 172: 172-189.
    [111]
    刘冰河. 锂离子电池机械完整性的多场耦合机理研究[D]. 北京: 北京航空航天大学, 2018.

    LIU Binghe. The study of multi-physics mechanism of mechanical integrity for lithium-ion battery[D]. Beijing: Beihang University, 2018.
    [112]
    XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact[J]. Journal of Power Sources, 2014, 267: 78-97. doi: 10.1016/j.jpowsour.2014.05.078
    [113]
    ZHANG H, ZHOU M, HU L, et al. Mechanism of the dynamic behaviors and failure analysis of lithium-ion batteries under crushing based on stress wave theory[J]. Engineering Failure Analysis, 2020, 108: 104290. doi: 10.1016/j.engfailanal.2019.104290
    [114]
    HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries[J]. International Journal of Impact Engineering, 2018, 143: 103618.
    [115]
    ZHOU M, HU L, CHEN S, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse[J]. Journal of Power Sources, 2021, 267: 229897.
    [116]
    LIU B, ZHANG J, ZHANG C, et al. Mechanical integrity of 18650 lithium-ion battery module: packing density and packing mode[J]. Engineering Failure Analysis, 2018, 91: 315-326. doi: 10.1016/j.engfailanal.2018.04.041
    [117]
    KUMAR A, KALNAUS S, SIMUNOVIC S, et al. Communication-Indentation of li-ion pouch cell: effect of material homogenization on prediction of internal short circuit[J]. Journal of the Electrochemical Society, 2016, 163(10): 2494-2496. doi: 10.1149/2.0151613jes
    [118]
    YIN H, MA S, LI H, et al. Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse[J]. eTransportation, 2021, 7: 100098. doi: 10.1016/j.etran.2020.100098
    [119]
    LI W, ZHU J. A large deformation and fracture model of lithium-ion battery cells treated as a homogenized medium[J]. Journal of the Electrochemical Society, 2020, 167(12): 120504. doi: 10.1149/1945-7111/aba936
    [120]
    李志杰, 陈吉清, 兰凤崇, 等. 方形锂离子电池内芯层级式模型方法及细观变形失效分析[J]. 机械工程学报, 2021, 57(18): 229-239. doi: 10.3901/JME.2021.18.229

    LI Zhijie, CHEN Jiqing, LAN Fengchong, et al. Internal layer-stacking model method of prismatic lithium-ion batteries and mesoscale failure analysis[J]. Journal of Mechanical Engineering, 2021, 57(18): 229-239. doi: 10.3901/JME.2021.18.229
    [121]
    HAO W, XIE J, WANG F. The indentation analysis triggering internal short circuit of lithium‐ion pouch battery based on shape function theory[J]. International Journal of Energy Research, 2018, 42(11): 3696-3703. doi: 10.1002/er.4109
    [122]
    HAO W, XIE J, BO X, et al. Resistance exterior force property of lithium‐ion pouch batteries with different positive materials[J]. International Journal of Energy Research, 2019, 43(9): 4976-4986. doi: 10.1002/er.4588
    [123]
    FINEGAN D P, DARCY E, KEYSER M, et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway[J]. Advanced Science, 2018, 5(1): 1700369. doi: 10.1002/advs.201700369
    [124]
    FINEGAN D P, DARST J, WALKER W, et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells[J]. Journal of Power Sources, 2019, 417: 29-41. doi: 10.1016/j.jpowsour.2019.01.077
    [125]
    WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. doi: 10.1016/j.jpowsour.2012.02.038
    [126]
    WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. doi: 10.1016/j.pecs.2019.03.002
    [127]
    ZHAO W, LUO G, WANG C. Modeling internal shorting process in large-format li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(7): 1352-1364. doi: 10.1149/2.1031507jes
    [128]
    CHIU K, LIN C, YEH S, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources, 2014, 251: 254-263. doi: 10.1016/j.jpowsour.2013.11.069
    [129]
    KIM J, MALLARAPU A, SANTHANAGOPALAN S. Transport processes in a li-ion cell during an internal short-circuit[J]. Journal of the Electrochemical Society, 2020, 167(9): 090554. doi: 10.1149/1945-7111/ab995d
    [130]
    COMAN P T, DARCY E C, VEJE C T, et al. Modelling li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and arrhenius formulations[J]. Journal of the Electrochemical Society, 2017, 164(4): 587-593. doi: 10.1149/2.0341704jes
    [131]
    ZAVALIS T G, BEHM M, LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society, 2012, 159(6): 848-859. doi: 10.1149/2.096206jes
    [132]
    ZHAO R, LIU J, GU J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. doi: 10.1016/j.energy.2017.02.017
    [133]
    ZHAO W, LUO G, WANG C. Modeling nail penetration process in large-format li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(1): 207-217. doi: 10.1149/2.1071501jes
    [134]
    SANTHANAGOPALAN S, RAMADASS P, ZHANG Z. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. doi: 10.1016/j.jpowsour.2009.05.002
    [135]
    FANG W, RAMADASS P, ZHANG Z. Study of internal short in a li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model[J]. Journal of Power Sources, 2014, 248: 1090-1098. doi: 10.1016/j.jpowsour.2013.10.004
    [136]
    FENG X, HE X, OUYANG M, et al. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): 3748-3765. doi: 10.1149/2.0311816jes
    [137]
    FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): 1550-167.
    [138]
    LI Y, WANG W, LIN C, et al. Multi-physics safety model based on structure damage for lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2020, 277: 124094. doi: 10.1016/j.jclepro.2020.124094
    [139]
    LI Y, WANG W, LIN C, et al. High-efficiency multiphysics coupling framework for cylindrical lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2021, 286: 125451. doi: 10.1016/j.jclepro.2020.125451
    [140]
    JIA Y, GAO X, MOUILLET J-B, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach[J]. Journal of Energy Storage, 2021, 33: 102090. doi: 10.1016/j.est.2020.102090
    [141]
    DENG J, BAE C, MILLER T, et al. Communication—Multi-physics battery safety simulations across length scales[J]. Journal of the Electrochemical Society, 2019, 166(14): 3119-3121. doi: 10.1149/2.0261914jes
    [142]
    DENG J, BAE C, MILLER T, et al. Accelerate battery safety simulations using composite tshell elements[J]. Journal of the Electrochemical Society, 2018, 165(13): 3067-3076. doi: 10.1149/2.0521813jes
    [143]
    DENG J, SMITH I, BAE C, et al. Impact modeling and testing of pouch and prismatic cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090550. doi: 10.1149/1945-7111/ab9962
    [144]
    MARCICKI J, ZHU M, BARLETT A, et al. A simulation framework for battery cell impact safety modeling using LS-DYNA[J]. Journal of the Electrochemical Society, 2017, 164(1): 6440-6448. doi: 10.1149/2.0661701jes
    [145]
    YUAN C, GAO X, WONG H K, et al. A Multiphysics computational framework for cylindrical battery behavior upon mechanical loading based on LS DYNA[J]. Journal of the Electrochemical Society, 2019, 166(6): 1160-1169. doi: 10.1149/2.1071906jes
    [146]
    LI H, LIU B, ZHOU D, et al. Coupled mechanical- electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. doi: 10.1149/1945-7111/aba96f
    [147]
    LI H, ZHOU D, DU C, et al. Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 020904. doi: 10.1115/1.4048705
    [148]
    LEE D-C, KIM C-W. Two-way nonlinear mechanical- electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475: 228678. doi: 10.1016/j.jpowsour.2020.228678
    [149]
    LIU B, ZHAO H, YU H, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017, 256: 172-184. doi: 10.1016/j.electacta.2017.10.045
    [150]
    MALLARAPU A, KIM J, CARNEY K, et al. Modeling extreme deformations in lithium ion batteries[J]. eTransportation, 2020, 4: 100065. doi: 10.1016/j.etran.2020.100065
    [151]
    LI W, ZHU J, XIA Y, et al. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule, 2019, 3(11): 2703-2715. doi: 10.1016/j.joule.2019.07.026
    [152]
    LI Y, WANG W, LIN C, et al. Safety modeling and protection for lithium-ion batteries based on artificial networks method under mechanical abuse[J]. Science China Technological Sciences, 2021, 64(11): 2373-2388. doi: 10.1007/s11431-021-1826-2
    [153]
    JIA Y, LI J, YUAN C, et al. Data-driven safety risk prediction of lithium-ion battery[J]. Advanced Energy Materials, 2021, 11(18): 2003868. doi: 10.1002/aenm.202003868
    [154]
    FINEGAN D P, TJADEN B, HEENAN T M M, et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(13): 3285-3291. doi: 10.1149/2.1501713jes
    [155]
    JIA Y, LIU B, HONG Z, et al. Safety issues of defective lithium-ion batteries: identification and risk evaluation[J]. Journal of Materials Chemistry A, 2020, 8(25): 12472-12484. doi: 10.1039/D0TA04171H
    [156]
    XIONG R, SUN W, YU Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electrical vehicles[J]. Applied Energy, 2020, 279: 115855. doi: 10.1016/j.apenergy.2020.115855
    [157]
    胡晓松, 陈科坪, 唐小林, 等. 基于机器学习速度预测的并联混合动力车辆能量管理研究[J]. 机械工程学报, 2020, 56(16): 181-192. doi: 10.3901/JME.2020.16.181

    HU Xiaosong, CHEN Keping, TANG Xiaolin, et al. Machine learning velocity prediction- based energy management of parallel hybrid electric vehicle[J]. Journal of Mechanical Engineering, 2020, 56(16): 181-192. doi: 10.3901/JME.2020.16.181
    [158]
    张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27. doi: 10.3901/JME.2019.20.017

    ZHANG Yajun, WANG Hewu, FENG Xuning, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27. doi: 10.3901/JME.2019.20.017
    [159]
    LI H, ZHOU D, ZHANG M, et al. Multi-field interpretation of internal short circuit and thermal numaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. doi: 10.1016/j.energy.2022.126027
    [160]
    ZHOU D, LI H, LI Z, et al. Toward the performance evolution of lithium-ion battery upor impact loading[J]. Electrocimica Acta, 2022, 432: 41192.
  • 加载中

Catalog

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(92) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return