Volume 58 Issue 24
Dec 2022
Turn off MathJax
Article Contents
QIAN Guangjun, HAN Xuebing, LU Languang, SUN Yuedong, ZHENG Yuejiu. Advances in Lithium-ion Battery System Equalization Strategy Research[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 145-162. doi: 10.3901/JME.2022.24.145
Citation: QIAN Guangjun, HAN Xuebing, LU Languang, SUN Yuedong, ZHENG Yuejiu. Advances in Lithium-ion Battery System Equalization Strategy Research[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 145-162. doi: 10.3901/JME.2022.24.145

Advances in Lithium-ion Battery System Equalization Strategy Research

doi: 10.3901/JME.2022.24.145
  • Received Date: 22 Apr 2022
  • Rev Recd Date: 02 Sep 2022
  • Available Online: 07 Mar 2024
  • Issue Publish Date: 20 Dec 2022
  • Compared to battery cells, the capacity, life and safety of the battery system will be significantly reduced after forming a group, which is due to the inconsistency problem caused by internal parameters and external environment. Therefore, an equalization management system is needed to guarantee the consistency of the battery, of which the equalization strategy is one of the keys. The research progress of battery equalization strategy at home and abroad is reviewed from four aspects: equalization motivations, equalization objectives, equalization algorithms and equalization strategies evaluation. Firstly, the battery pack consistency influencing factors are analyzed in depth to determine the equalization motivations. Secondly, from the equalization objectives, three research advances in battery pack, circuit and multi-objective fusion are summarized. Again, the equalization algorithms are elaborated according to different algorithm classifications. After that, the evaluation of the equalization strategies are summarized and a new evaluation method is proposed. Finally, the key problems of the current equalization technology that need to be solved are systematically sorted out, and the next research on equalization strategies are prospected.

     

  • loading
  • [1]
    LI B, HANEKLAUS N. The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China[J]. Energy Reports, 2022, 8(4): 1090-1098.
    [2]
    WANG X, WEI X, ZHU J, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7: 100093. doi: 10.1016/j.etran.2020.100093
    [3]
    WANG Y, WANG L, LI M, et al. A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems[J]. eTransportation, 2020, 4: 100064. doi: 10.1016/j.etran.2020.100064
    [4]
    HALES A, PROSSER R, BRAVO DIAZ L, et al. The cell cooling coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs[J]. eTransportation, 2020, 6: 100089. doi: 10.1016/j.etran.2020.100089
    [5]
    ZHOU Z, CUI Y, KONG X, et al. A fast capacity estimation method based on open circuit voltage estimation for LiNixCoyMn1-x-y battery assessing in electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101830. doi: 10.1016/j.est.2020.101830
    [6]
    LIU J, WANG Z, HOU Y, et al. Data-driven energy management and velocity prediction for four-wheel-independent-driving electric vehicles[J]. eTransportation, 2021, 9: 100119. doi: 10.1016/j.etran.2021.100119
    [7]
    SONG Z, YANG X G, YANG N, et al. A study of cell-to-cell variation of capacity in parallel-connected lithium-ion battery cells[J]. eTransportation, 2021, 7: 100091. doi: 10.1016/j.etran.2020.100091
    [8]
    WANG X, FANG Q, DAI H, et al. Investigation on cell performance and inconsistency evolution of series and parallel lithium-ion battery modules[J]. Energy Technology, 2021, 9(7): 2100072. doi: 10.1002/ente.202100072
    [9]
    NAGUIB M, KOLLMEYER P, EMADI A. Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing: review[J]. IEEE Access, 2021, 9: 50570-50582. doi: 10.1109/ACCESS.2021.3068776
    [10]
    FENG X, ZHANG X, XIANG Y. An inconsistency assessment method for backup battery packs based on time -series clustering[J]. Journal of Energy Storage, 2020, 31: 101666. doi: 10.1016/j.est.2020.101666
    [11]
    ZHENG Y, GAO W, OUYANG M, et al. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter[J]. Journal of Power Sources, 2018, 383: 50-58. doi: 10.1016/j.jpowsour.2018.02.058
    [12]
    ZHANG Y, PENG Z, GUAN Y, et al. Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J]. Energy, 2021, 221: 119901. doi: 10.1016/j.energy.2021.119901
    [13]
    刘春辉, 任宏斌. 基于SOC的动力电池组主动均衡研究[J]. 储能科学与技术, 2022, 11(2): 667-672. doi: 10.19799/j.cnki.2095-4239.2021.0420

    LIU Chunhui, REN Hongbin. Research on soc-based active balancing of power battery packs[J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. doi: 10.19799/j.cnki.2095-4239.2021.0420
    [14]
    DURAISAMY T, DEEPA K. Evaluation and comparative study of cell balancing methods for lithium-ion batteries used in electric vehicles[J]. International Journal of Renewable Energy Development, 2021, 10(3): 471-479. doi: 10.14710/ijred.2021.34484
    [15]
    BARRERAS J V, DE CASTRO R, WAN Y, et al. A consensus algorithm for multi-objective battery balancing[J]. Energies, 2021, 14(14): 4279. doi: 10.3390/en14144279
    [16]
    ZUN C Y, PARK S U, MOK H S. New cell balancing charging system research for lithium-ion batteries[J]. Energies, 2020, 13(6): 1393. doi: 10.3390/en13061393
    [17]
    HUI X, SONG D W, SHI F D, et al. Novel voltage equalisation circuit of the lithium battery pack based on bidirectional flyback converter[J]. IET Power Electronics, 2020, 13(11): 2194-2200. doi: 10.1049/iet-pel.2019.1620
    [18]
    NARAYANASWAMY S, STEINHORST S, LUKASIEWYCZ M, et al. Optimal dimensioning and control of active cell balancing architectures[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9632-9646. doi: 10.1109/TVT.2019.2936646
    [19]
    刘征宇, 夏登威, 姚利阳, 等. 基于耦合绕组的锂电池组主动均衡方案研究[J]. 电机与控制学报, 2021, 25(2): 54-64. doi: 10.15938/j.emc.2021.02.007

    LIU Zhengyu, XIA Dengwei, YAO Liyang, et al. Research on active equalization scheme of lithium battery pack based on coupling winding[J]. Electric Machines and Control, 2021, 25(2): 54-64. doi: 10.15938/j.emc.2021.02.007
    [20]
    HABIB A, HASAN M K, MAHMUD M, et al. A review: Energy storage system and balancing circuits for electric vehicle application[J]. IET Power Electronics, 2021, 14(1): 1-13. doi: 10.1049/pel2.12013
    [21]
    DAM S K, JOHN V. Low-frequency selection switch based cell-to-cell battery voltage equalizer with reduced switch count[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 3842-3851. doi: 10.1109/TIA.2021.3075184
    [22]
    PENG F X, WANG H Y, YU L. Analysis and design considerations of efficiency enhanced hierarchical battery equalizer based on bipolar ccm buck-boost units[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 4053-4063. doi: 10.1109/TIA.2019.2916493
    [23]
    郭向伟, 刘震, 康龙云, 等. 一种单电感串并联电池组均衡方法[J]. 电机与控制学报, 2021, 25(12): 87-95. doi: 10.15938/j.emc.2021.12.010

    GUO Xiangwei, LIU Zhen, KANG Longyun, et al. A single inductor series-parallel battery pack equalization method[J]. Electric Machines and Control, 2021, 25(12): 87-95. doi: 10.15938/j.emc.2021.12.010
    [24]
    KOSEOGLOU M, TSIOUMAS E, JABBOUR N, et al. Highly effective cell equalization in a lithium-ion battery management system[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 2088-2099. doi: 10.1109/TPEL.2019.2920728
    [25]
    ZHANG Z Y, ZHANG L Z, HU L, et al. Active cell balancing of lithium-ion battery pack based on average state of charge[J]. International Journal of Energy Research, 2020, 44(4): 2535-2548. doi: 10.1002/er.4876
    [26]
    WU Q X, GAO M Y, LIN H P, et al. A bimodal multichannel battery pack equalizer based on a quasi-resonant two-transistor forward converter[J]. Energies, 2021, 14(4): 1112. doi: 10.3390/en14041112
    [27]
    GHAEMINEZHAD N, OUYANG Q, HU X S, et al. Active cell equalization topologies analysis for battery packs: A systematic review[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9119-9135. doi: 10.1109/TPEL.2021.3052163
    [28]
    CAO Y L, LI K, LU M. Balancing method based on flyback converter for series-connected cells[J]. IEEE Access, 2021, 9: 52393-52403. doi: 10.1109/ACCESS.2021.3070047
    [29]
    UNO M, YOSHINO K. Modular equalization system using dual phase-shift-controlled capacitively isolated dual active bridge converters to equalize cells and modules in series-connected lithium-ion batteries[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 2983-2995. doi: 10.1109/TPEL.2020.3013653
    [30]
    CAO J W, XIA B Z, ZHOU J. An active equalization method for lithium-ion batteries based on flyback transformer and variable step size generalized predictive control[J]. Energies, 2021, 14(1): 207. doi: 10.3390/en14010207
    [31]
    DAS U K, SHRIVASTAVA P, TEY K S, et al. Advancement of lithium-ion battery cells voltage equalization techniques: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110227. doi: 10.1016/j.rser.2020.110227
    [32]
    华旸, 周思达, 何瑢, 等车用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报, 2019, 55(20): 73-84. doi: 10.3901/JME.2019.20.073

    HUA Yang, ZHOU Sida, HE Rong, et al. Research progress on the balanced management system of automotive lithium-ion power battery pack[J]. Journal of Mechanical Engineering, 2019, 55(20): 73-84. doi: 10.3901/JME.2019.20.073
    [33]
    FENG F, HU X, LIU J, et al. A review of equalization strategies for series battery packs: variables, objectives, and algorithms[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109464. doi: 10.1016/j.rser.2019.109464
    [34]
    YANG H, ZHOU S D, CUI H G, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research, 2020, 44(14): 11059-11087. doi: 10.1002/er.5683
    [35]
    蔡敏怡, 张娥, 林靖, 等. 串联锂离子电池组均衡拓扑综述[J]. 中国电机工程学报, 2021, 41(15): 5294-5311. doi: 10.13334/J.0258-8013.PCSEE.201749

    CAI Minyi, ZHANG E, LIN Jing, et al. A review of series lithium-ion battery pack equalization topology[J]. Proceedings of the CSEE, 2021, 41(15): 5294-5311. doi: 10.13334/J.0258-8013.PCSEE.201749
    [36]
    LV J, SONG W J, FENG Z P, et al. Performance and comparison of equalization methods for lithium ion batteries in series[J]. International Journal of Energy Research, 2021, 45(3): 4669-4680. doi: 10.1002/er.6130
    [37]
    DAI S, ZHANG F, ZHAO X. Series-connected battery equalization system: A systematic review on variables, topologies, and modular methods[J]. International Journal of Energy Research, 2021, 45(14): 19709-19728. doi: 10.1002/er.7053
    [38]
    TURKSOY A, TEKE A, ALKAYA A. A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110274. doi: 10.1016/j.rser.2020.110274
    [39]
    CARTER J, FAN Z, CAO J. Cell equalisation circuits: A review[J]. Journal of Power Sources, 2020, 448: 227489. doi: 10.1016/j.jpowsour.2019.227489
    [40]
    ALVAREZ-DIAZCOMAS A, ESTEVEZ-BEN A A, RODRIGUEZ-RESENDIZ J, et al. A review of battery equalizer circuits for electric vehicle applications[J]. Energies, 2020, 13(21): 5688. doi: 10.3390/en13215688
    [41]
    OMARIBA Z B, ZHANG L J, SUN D B. Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles[J]. IEEE Access, 2019, 7: 129335-129352. doi: 10.1109/ACCESS.2019.2940090
    [42]
    GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M I, et al. Battery equalization active methods[J]. Journal of Power Sources, 2014, 246: 934-949. doi: 10.1016/j.jpowsour.2013.08.026
    [43]
    YANG R, GAO L, WU T, et al. Comparative study on equalization technology of lithium battery packs for electric vehicle[C/CD]// 2019 5th International Conference on Energy Equipment Science and Engineering (ICEESE), November 29 - December, 1, 2019, Harbin, China. Earth and Environmental Science, 2020.
    [44]
    王鹿军, 单恩泽. 基于动态式双阈值的锂电池组主被动均衡策略[J]. 电机与控制学报, 2022, 26(1): 126-136. doi: 10.15938/j.emc.2022.01.014

    WANG Lujun, SHAN Enze. Active-passive equalization strategy for lithium battery pack based on dynamic dual threshold[J]. Electric Machines and Control, 2022, 26(1): 126-136. doi: 10.15938/j.emc.2022.01.014
    [45]
    ZHENG Y, OUYANG M, LU L, et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278: 287-295. doi: 10.1016/j.jpowsour.2014.12.105
    [46]
    魏芃, 蔡涛, 朝泽云, 等. 电池均衡系统的分布式协同一致性控制策略[J]. 中国电机工程学报, 2021, 41(3): 908-921. doi: 10.13334/J.0258-8013.PCSEE.192064

    WEI Peng, CAI Tao, CHAO Zeyun, et al. Distributed cooperative consistency control strategy for battery equalization system[J]. Proceedings of the CSEE, 2021, 41(3): 908-921. doi: 10.13334/J.0258-8013.PCSEE.192064
    [47]
    郑岳久. 车用锂离子动力电池组的一致性研究[D]. 北京: 清华大学, 2014.

    ZHENG Yuejiu. Consistency study of lithium-ion power battery packs for vehicles[D]. Beijing: Tsinghua University, 2014.
    [48]
    汪宜秀, 魏学哲, 房乔华, 等. 面向整组寿命最大化的电动汽车电池一致性变化规律及其均衡策略[J]. 机械工程学报, 2020, 56(22): 176-183. doi: 10.3901/JME.2020.22.176

    WANG Yixiu, WEI Xuezhe, FANG Qiaohua, et al. Battery consistency variation law and its equalization strategy for electric vehicles with a view to maximizing the whole pack life[J]. Journal of Mechanical Engineering, 2020, 56(22): 176-183. doi: 10.3901/JME.2020.22.176
    [49]
    SUN W B, LI Y L, LIU L Z, et al. A switched-capacitor battery equalization method for improving balancing speed[J]. IET Electric Power Applications, 2021, 15(5): 555-569. doi: 10.1049/elp2.12045
    [50]
    YANG X G, XI L G, GAO Z, et al. Analysis and design of a voltage equalizer based on boost full-bridge inverter and symmetrical voltage multiplier for series-connected batteries[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3828-3840. doi: 10.1109/TVT.2020.2974530
    [51]
    WANG S C, YANG S Y, YANG W, et al. A new kind of balancing circuit with multiple equalization modes for serially connected battery pack[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2142-2150.
    [52]
    WU L, PANG K, ZHENG Y, et al. A multi-module equalization system for lithium-ion battery packs[J]. International Journal of Energy Research, 2021, 46(3): 2771-2782.
    [53]
    SU L, WANG Z P, REN Y H. A novel two-steps method for estimation of the capacity imbalance among in-pack cells[J]. Journal of Energy Storage, 2019, 26: 101031. doi: 10.1016/j.est.2019.101031
    [54]
    QI X, WANG Y, FANG M, et al. A reduced- component-count centralized equalization system for series-connected battery packs based on a novel integrated cascade topology[J]. IEEE Transactions on Industry Applications, 2021, 57(6): 6105-6116. doi: 10.1109/TIA.2021.3103482
    [55]
    DONG G Z, YANG F F, TSUI K L, et al. Active balancing of lithium-ion batteries using graph theory and a-star search algorithm[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2587-2599. doi: 10.1109/TII.2020.2997828
    [56]
    QI X B, WANG Y, FANG M Z. An integrated cascade structure-based isolated bidirectional DC-DC converter for battery charge equalization[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12003-12021. doi: 10.1109/TPEL.2020.2988661
    [57]
    WAN L, CHEN Y, ZHOU Y, et al. Design of balanced charging circuit for lithium ion battery[C]// 38th Chinese Control Conference (CCC), July 27-30, 2019, Guangzhou, China, IEEE, 2019: 6476-6480.
    [58]
    JIAQIANG E J, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: 121822. doi: 10.1016/j.energy.2021.121822
    [59]
    SEE K, LIM K C, BATTERNALLY S, et al. Charge based self-equalization for imbalance battery pack in an energy storage management system developing a time-based equalization algorithm[J]. IEEE Consumer Electronics Magazine, 2019, 8(2): 16-21. doi: 10.1109/MCE.2018.2880805
    [60]
    VAN C N, VINH T N, NGO M-D, et al. Optimal soc balancing control for lithium-ion battery cells connected in series[J]. Energies, 2021, 14(10): 2875. doi: 10.3390/en14102875
    [61]
    HEIN T, ZIEGLER A, OESER D, et al. A capacity-based equalization method for aged lithium-ion batteries in electric vehicles[J]. Electric Power Systems Research, 2021, 191: 106898. doi: 10.1016/j.epsr.2020.106898
    [62]
    ZHENG Y, OUYANG M, LU L, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation[J]. Journal of Power Sources, 2014, 247: 676-686. doi: 10.1016/j.jpowsour.2013.09.030
    [63]
    ZHENG Y, OUYANG M, LU L, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 2. Fuzzy logic equalization[J]. Journal of Power Sources, 2014, 247: 460-466. doi: 10.1016/j.jpowsour.2013.09.012
    [64]
    SONG L J, LIANG T Y, LU L G, et al. Lithium-ion battery pack equalization based on charging voltage curves[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105516.
    [65]
    HAN W J, ZOU C F, ZHANG L, et al. Near-fastest battery balancing by cell/module reconfiguration[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6954-6964. doi: 10.1109/TSG.2019.2915013
    [66]
    WU X G, CUI Z H, LI X F, et al. Control strategy for active hierarchical equalization circuits of series battery packs[J]. Energies, 2019, 12(11): 2071. doi: 10.3390/en12112071
    [67]
    OUYANG Q, HAN W J, ZOU C F, et al. Cell balancing control for lithium-ion battery packs: A hierarchical optimal approach[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5065-5075. doi: 10.1109/TII.2019.2950818
    [68]
    LEE S, KIM M, BAEK J W, et al. Enhanced switching pattern to improve cell balancing performance in active cell balancing circuit using multi-winding transformer[J]. IEEE Access, 2020, 8: 149544-149554. doi: 10.1109/ACCESS.2020.3015963
    [69]
    DING X F, ZHANG D H, CHENG J W, et al. A novel active equalization topology for series-connected lithium-ion battery packs[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6892-6903. doi: 10.1109/TIA.2020.3015820
    [70]
    YANG Y, ZHU W C, XIE C J, et al. A layered bidirectional active equalization method for retired power lithium-ion batteries for energy storage applications[J]. Energies, 2020, 13(4): 832. doi: 10.3390/en13040832
    [71]
    LU J L, WANG Y, LI X. Isolated bidirectional DC-DC converter with quasi-resonant zero-voltage switching for battery charge equalization[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4388-4406. doi: 10.1109/TPEL.2018.2858138
    [72]
    LA P H, CHOI S J. Novel dynamic resistance equalizer for parallel-connected battery configurations[J]. Energies, 2020, 13(13): 3315. doi: 10.3390/en13133315
    [73]
    HSIEH Y C, HUANG Y C, CHUANG P C. A charge-equalization circuit with an intermediate resonant energy tank[J]. Energies, 2020, 13(24): 6566 doi: 10.3390/en13246566
    [74]
    WANG X L, CHENG K W E, FONG Y C. Zero current switching switched-capacitors balancing circuit for energy storage cell equalization and its associated hybrid circuit with classical buck-boost[J]. Energies, 2019, 12(14): 2726. doi: 10.3390/en12142726
    [75]
    LI X, LYU L, GENG G, et al. Power allocation strategy for battery energy storage system based on cluster switching[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3700-3710. doi: 10.1109/TIE.2021.3076731
    [76]
    KHALID A, HERNANDEZ A, SUNDARARAJAN A, et al. Simulation-based analysis of equalization algorithms on active balancing battery topologies for electric vehicles[M/OL]. Cham: Springer, 2020 [2022-06-28]. https://link.springer.com/chapter/10.1007/978-3-030-32520-6_52#chapter-info.
    [77]
    WANG B, QIN F F, ZHAO X B, et al. Equalization of series connected lithium-ion batteries based on back propagation neural network and fuzzy logic control[J]. International Journal of Energy Research, 2020, 44(6): 4812-4826. doi: 10.1002/er.5274
    [78]
    LIAO H T, JIANG F, JIN C, et al. Lithium-ion battery soc equilibrium: an artificial potential field-based method[J]. Energies, 2020, 13(21): 5691. doi: 10.3390/en13215691
    [79]
    WU T Z, JI F, LIAO L, et al. Voltage-soc balancing control scheme for series-connected lithium-ion battery packs[J]. Journal of Energy Storage, 2019, 25: 100895. doi: 10.1016/j.est.2019.100895
    [80]
    ZHANG H K, WANG Y F, QI H, et al. Active battery equalization method based on redundant battery for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7531-7543. doi: 10.1109/TVT.2019.2925742
    [81]
    ZHANG Y L, HONG Y, CHOI K. Optimal energy-dissipation control for SOC based balancing in series connected Lithium-ion battery packs[J]. Multimedia Tools and Applications, 2020, 79(23-24): 15923-15944. doi: 10.1007/s11042-018-6655-4
    [82]
    CHEN X, HU G D, GUO F, et al. Switched energy management strategy for fuel cell hybrid vehicle based on switch network[J]. Energies, 2020, 13(1): 247. doi: 10.3390/en13010247
    [83]
    LI X L, XU J P, XU S G, et al. Modularised non-isolated two-switch equaliser using full-wave voltage multiplier for series-connected battery/super-capacitor[J]. IET Power Electronics, 2019, 12(4): 869-877. doi: 10.1049/iet-pel.2018.5567
    [84]
    LI D M, WU Z J, ZHAO B, et al. An improved droop control for balancing state of charge of battery energy storage systems in ac microgrid[J]. IEEE Access, 2020, 8: 71917-71929. doi: 10.1109/ACCESS.2020.2987098
    [85]
    ROY D, NARAYANASWAMY S, PROBSTL A, et al. Optimal scheduling for active cell balancing[C]// 2019 IEEE Real-Time Systems Symposium (RTSS), December 03-06, 2019, IEEE, 2020: 120-132.
    [86]
    WEI Y, DAI S, WANG J, et al. Switch matrix algorithm for series lithium battery pack equilibrium based on derived acceleration information Gauss-Seidel[J]. Mathematical Problems in Engineering, 2019, 2019: 5159497.
    [87]
    PIROOZ A, FIROUZ Y, BERECIBAR M, et al. Battery voltage equalisation using single-phase cascaded H-bridge converters[J]. IET Power Electronics, 2020, 13(18): 4158-4167. doi: 10.1049/iet-pel.2020.0522
    [88]
    CHEN Y, SHEN T, YANG S Y, et al. A path planning strategy with ant colony algorithm for series connected batteries[J]. Electronics, 2020, 9(11): 1816. doi: 10.3390/electronics9111816
    [89]
    SUN J L, LIU W, TANG C Y, et al. A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7853-7865. doi: 10.1109/TPEL.2021.3049166
    [90]
    李军, 黄志祥, 唐爽. 基于K最近邻遗传算法的电池均衡策略[J]. 汽车安全与节能学报, 2019, 10(4): 525-530. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201904015.htm

    LI Jun, HUANG Zhixiang, TANG Shuang. Battery equalization strategy based on K-nearest neighbor genetic algorithm[J]. Journal of Automotive Safety and Energy, 2019, 10(4): 525-530. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201904015.htm
    [91]
    HOQUE M M, HANNAN M A, MOHAMED A. Charging and discharging model of lithium-ion battery for charge equalization control using particle swarm optimization algorithm[J]. Journal of Renewable and Sustainable Energy, 2016, 8(6): 065701. doi: 10.1063/1.4967972
    [92]
    WU T, QI Y, LIAO L, et al. Research on equalization strategy of lithium-ion batteries based on fuzzy logic control[J]. Journal of Energy Storage, 2021, 40: 102722. doi: 10.1016/j.est.2021.102722
    [93]
    IMTIAZ A M, KHAN F H. "Time Shared Flyback Converter" Based regenerative cell balancing technique for series connected li-ion battery strings[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5960-5975. doi: 10.1109/TPEL.2013.2257861
    [94]
    LIU K L, YANG Z L, TANG X P, et al. Automotive battery equalizers based on joint switched-capacitor and buck-boost converters[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12716-12724. doi: 10.1109/TVT.2020.3019347
    [95]
    SHANG Y L, ZHANG Q, CUL N X, et al. Multicell-to-multicell equalizers based on matrix and half-bridge LC converters for series-connected battery strings[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1755-1766. doi: 10.1109/JESTPE.2019.2893167
    [96]
    王敏旺, 吴华伟, 刘祯. 一种面向电池组均衡模型的定量评价体系[J]. 储能科学与技术, 2021, 10(1): 271-279. doi: 10.19799/j.cnki.2095-4239.2020.0260

    WANG Minwang, WU Huawei, LIU Zhen. A quantitative evaluation system for battery pack equilibrium model[J]. Energy Storage Science and Technology, 2021, 10(1): 271-279. doi: 10.19799/j.cnki.2095-4239.2020.0260
    [97]
    LAI X, CHEN Q, TANG X, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. eTransportation, 2022, 12: 100169. doi: 10.1016/j.etran.2022.100169
  • 加载中

Catalog

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(262) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return