Volume 58 Issue 24
Dec 2022
Turn off MathJax
Article Contents
GAO Jiewei, YU Minghua, ZHU Shunpeng, LIAO Ding, LI Yabo, HAN Jing. Fatigue Behavior Analysis and Simulation of Foreign Object Damage on S38C High-speed Railway Axle[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 178-187. doi: 10.3901/JME.2022.24.178
Citation: GAO Jiewei, YU Minghua, ZHU Shunpeng, LIAO Ding, LI Yabo, HAN Jing. Fatigue Behavior Analysis and Simulation of Foreign Object Damage on S38C High-speed Railway Axle[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 178-187. doi: 10.3901/JME.2022.24.178

Fatigue Behavior Analysis and Simulation of Foreign Object Damage on S38C High-speed Railway Axle

doi: 10.3901/JME.2022.24.178
  • Received Date: 26 Jan 2022
  • Rev Recd Date: 30 Sep 2022
  • Available Online: 07 Mar 2024
  • Issue Publish Date: 20 Dec 2022
  • Foreign object damage(FOD) is one of the typical issues leading to fatigue failure of high-speed railway axles. Morphologies of the damage on S38C high-speed railway axles were observed by stereomicroscopy. FODs were simulated by firing tungsten steel spheres or cubes under different velocities and incident angles to the outer surfaces of specimen extracted from S38C axle. Step-loading method was employed to determine the four-point bending fatigue strength. Morphologies of damages were investigated by scanning electron microscopy(SEM), and also the fracture surfaces. Statistics of surface damages on S38C axles show that a large fraction of damages are scratches and the percentage of notch is small. Damage volume of normal impact by spherical projectiles increases with improvement of impact velocity. Material losses and microcracks appear in the crater rim and cracks initiated by adiabatic shear band can be found on the floor. Chipping due to deformation and cutting is the feature of damage by incline impact. The shape of impact damage by tungsten cube is various. Regardless of the impact condition, fatigue strength declines with increase of damage depth and it is feasible to assess impact damage by depth alone. The results provide guidance to the maintenance of S38C railway axles subjected to FODs.

     

  • loading
  • [1]
    翟婉明, 金学松, 赵永翔. 高速铁路工程中若干典型力学问题[J]. 力学进展, 2010, 40(4): 358-374. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004003.htm

    ZHAI Wanming, JIN Xuesong, ZHAO Yongxiang. Some typical mechanics problems in high-speed railway engineering[J]. Advances in Mechanics, 2010, 40(4): 358-374. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004003.htm
    [2]
    吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101007.htm

    WU Shengchuan, REN Xinyan, KANG Guozheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101007.htm
    [3]
    王超, 杨冰, 朱涛, 等. 表面强化车轴裂纹扩展及剩余寿命预测方法研究[J/OL]. 机械工程学报, 1-12[2022-09-29]. http://kns.cnki.net/kcms/detail/11.2187.TH.20220922.1930.002.html

    WANG Chao, YANG Bing, ZHU Tao, et al. Research on crack propagation and remaining life prediction method of surface strengthened axle[J/OL]. Journal of Mechanical Engineering, 1-12 [2022-09-29]. http://kns.cnki.net/kcms/detail/11.2187.TH.20220922.1930.002.html
    [4]
    周素霞, 卢俊霖, 吴毅, 等. 基于直流电位降的高铁车轴裂纹检测研究[J]. 机械工程学报, 2022, 58(14): 288-295. doi: 10.3901/JME.2022.14.288

    ZHOU Suxia, LU Junlin, WU Yi, et al. Research on crack detection of high-speed railway axle based on direct current potential drop[J]. Journal of Mechanical Engineering, 2022, 58(14): 288-295. doi: 10.3901/JME.2022.14.288
    [5]
    朱静, 顾家琳, 周惠华, 等. 高速列车空心车轴国产化的选材和试制[J]. 中国铁道科学, 2015, 36(2): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201502010.htm

    ZHU Jing, GU Jialin, ZHOU Huihua, et al. Material selection and trial manufacture for localization of hollow axle for high speed train[J]. China Railway Science, 2015, 36(2): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201502010.htm
    [6]
    李亚波, 杨凯, 陈一萍, 等. S38C车轴钢的旋转弯曲和超声振动疲劳性能[J]. 润滑与密封, 2017, 42(3): 124-128, 140. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201703025.htm

    LI Yabo, YANG Kai, CHEN Yiping, et al. Rotating bending and ultrasonic vibration fatigue properties of axle steel S38C[J]. Lubrication Engineering, 2017, 42(3): 124-128, 140. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201703025.htm
    [7]
    杜松林, 汪开忠, 胡芳忠. 国内外高速列车车轴技术综述及展望[J]. 中国材料进展, 2019, 38(7): 641-650. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201907002.htm

    DU Songlin, WANG Kaizhong, HU Fangzhong, Overview and prospect of axle technology for high speed trains at home and abroad[J]. Materials China, 2019, 38(7): 641-650. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201907002.htm
    [8]
    张闰琦. S38C材质车轴疲劳寿命及裂纹扩展行为研究[D]. 北京: 北京交通大学, 2021.

    ZHANG Runqi. Study on fatigue life and crack growth behavior of S38C axle[D]. Beijing: Beijing Jiaotong University, 2021.
    [9]
    任尊松, 吕晓旭, 李秋泽. 典型缺陷车轴应力分布及对疲劳性能影响研究[J]. 北京交通大学学报, 2020, 44(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202001008.htm

    REN Zunsong, LÜ Xiaoxu, LI Qiuze. Research on the stress distribution of axle with typical defects and its influence on fatigue performance[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202001008.htm
    [10]
    吴毅, 尹鸿祥, 张澎湃, 等. 含异物击打伤高速动车组车轴疲劳寿命预测[J]. 中国铁道科学, 2021, 42(2): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102013.htm

    WU Yi, YIN Hongxiang, ZHANG Pengpai, et al. Fatigue life prediction of high-speed EMU axle with foreign object damage[J]. China Railway Science, 2021, 42(2): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102013.htm
    [11]
    周素霞, 孙宇铎, 吴毅, 等. 车轴表面不同冲击缺陷的疲劳参数试验与仿真[J]. 中国科技论文, 2021, 16(10): 1080-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202110008.htm

    ZHOU Suxia, SUN Yuduo, WU Yi. Fatigue parameters test and simulation of different impact defects on axle surface[J]. China Science Paper, 2021, 16(10): 1080-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202110008.htm
    [12]
    沈训梁, 鲁连涛, 姜洪峰, 等. 车轴钢小试样及实物车轴中夹杂物尺寸对疲劳强度影响的差异分析[J]. 机械工程学报, 2010, 46(16): 48-52. http://www.cjmenet.com.cn/CN/Y2010/V46/I16/48

    SHEN Xunliang, LU Liantao, JIANG Hongfeng, et al. Effect of inclusion size on the fatigue strengthen of small specimens and railway alloy axles[J]. Journal of Mechanical Engineering, 2010, 46(16): 48-52. http://www.cjmenet.com.cn/CN/Y2010/V46/I16/48
    [13]
    董懿辉, 鲁连涛, 李小萱, 等. 空心轴与实心轴过盈配合结构微动磨损与疲劳的仿真分析[J]. 机械工程学报, 2022, 58(5): 161-169. doi: 10.3901/JME.2022.05.161

    DONG Yihui, LU Liantao, LI Xiaoxuan, et al. Simulation analysis of fretting wear and fatigue of press-fitted structure of hollow axle and solid axle[J]. Journal of Mechanical Engineering, 2022, 58(5): 161-169. doi: 10.3901/JME.2022.05.161
    [14]
    MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78(5): 810-825.
    [15]
    高杰维. 表面凹坑缺陷对高速列车车轴钢疲劳性能影响研究[D]. 成都: 西南交通大学, 2017.

    GAO Jiewei. Research on influence of surface pit defect on the fatigue propertyof high-speed train axle steel[D]. Chengdu: Southwest Jiaotong University, 2017.
    [16]
    林浩博. 高速动车组S38C车轴疲劳、裂纹扩展特性及可靠性研究[D]. 北京: 北京交通大学, 2017.

    LIN Haobo. Studies on the fatigue, crack propagation characteristics and reliability of EMU high speed S38C axle[D]. Beijing: Beijing Jiaotong University, 2017.
    [17]
    WU S C, XU Z W, KANG G Z, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100.
    [18]
    WU S C, LUO Y, SHEN Z, et al. Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020, 225: 106844.
    [19]
    潘向南. S38C车轴冲击损伤疲劳性能研究[D]. 成都: 西南交通大学, 2018.

    PAN Xiangnan. Study on fatigue performance of impact damage on S38C axle[D]. Chengdu: Southwest Jiaotong University, 2018.
    [20]
    GAO J W, PAN X N, HAN J, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles[J]. International Journal of Fatigue, 2020, 139: 105746.
    [21]
    WANG Y, LIU X, LI Z, et al. Research on evolution law of material comprehensive performance of S38C steel for high speed railway axle[J]. International Journal of Modern Physics B, 2019, 33: 1940012.
    [22]
    BOYCE B L, CHEN X, HUTCHINSON J W, et al. The residual stress state due to a spherical hard-body impact[J]. Mechanics of Materials, 2001, 33(8): 441-454.
    [23]
    GAO J W, DAI X, ZHU S P, et al. Failure causes and hardening techniques of railway axles–a review from the perspective of structural integrity[J]. Engineering Failure Analysis, 2022, 141: 106656.
    [24]
    MURAKAMI Y, BERETTA S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications[J]. Extremes, 1999, 2(2): 123-147.
  • 加载中

Catalog

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(36) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return