Volume 58 Issue 24
Dec 2022
Turn off MathJax
Article Contents
QI Yayun, DAI Huanyun, GAN Feng. Optimization of Wheel Profiles for High-speed Trains[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 188-197. doi: 10.3901/JME.2022.24.188
Citation: QI Yayun, DAI Huanyun, GAN Feng. Optimization of Wheel Profiles for High-speed Trains[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 188-197. doi: 10.3901/JME.2022.24.188

Optimization of Wheel Profiles for High-speed Trains

doi: 10.3901/JME.2022.24.188
  • Received Date: 05 Jul 2022
  • Rev Recd Date: 05 Nov 2022
  • Available Online: 07 Mar 2024
  • Issue Publish Date: 20 Dec 2022
  • Wheel profile optimization is a good solution to the problem of reduced dynamic performance caused by wheel wear of high-speed trains. A rotary-scaling fine-tuning method(RSFT) is used to generate the new wheel profile; a vehicle dynamics model for the certain high-speed trains is established, and the corresponding optimization objectives and constraints are calculated by the model; the optimal profile is optimized using a radial-based neural network-particle swarm optimization(RBF-PSO) algorithm. By comparing the dynamics and wear performance of the wheel profile before and after the optimization, it can be found that: the wheel profile critical speed after optimization is 424.6 km/h, an increase of 10.2%; the lateral and vertical ride indexes are reduced overall, while the safety indexes during curve passing are improved, and the derailment coefficient, overturning coefficient and lateral axle force are further reduced. The optimized wheel profile has a more evenly distribution of contact points and a reduced equivalent conicity. At the same time, the optimized wheel profile effectively reduces the depth of wheel wear and reduces the root wear of the wheel rim, reducing the maximum depth of wheel wear by 9.8%.

     

  • loading
  • [1]
    金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004.

    JIN Xuesong, LIU Qiyue. Wheel and rail tribology[M]. Beijing: China Railway Press, 2004.
    [2]
    金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征、机理、影响和对策——车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4): 3-13. doi: 10.3901/JME.2018.04.003

    JIN Xuesong, ZHAO Guotang, LIANG Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear: Transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4): 3-13. doi: 10.3901/JME.2018.04.003
    [3]
    李凡松, 王建斌, 石怀龙, 等. 动车组车体异常弹性振动原因及抑制措施研究[J]. 机械工程学报, 2019, 55(12): 178-188. doi: 10.3901/JME.2019.12.178

    LI Fansong, WANG Jianbin, SHI Huailong, et al. Research on the causes of abnormal elastic vibration of the EMU car body and restraint measures[J]. Journal of Mechanical Engineering, 2019, 55(12): 178-188. doi: 10.3901/JME.2019.12.178
    [4]
    LEWIS R, OLOFSSON U. Wheel-rail interface handbook[M]. Boca Raton: CRC/Taylor & Francis, 2009.
    [5]
    SHEN G, AYASSE J B, CHOLLET H, et al. A unique design method for wheel profiles by considering the contact angle function[J]. Journal of Rail and Rapid Transit, 2003, 217(1): 25-30. doi: 10.1243/095440903762727320
    [6]
    SHEVTSOV I Y, MARKINE V L, ESVELD C. Optimal design of wheel profile for railway vehicles[C]//Proceedings 6th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Gothenburg, Sweden, 2003: 231-236.
    [7]
    POLACH O. Wheel profile design for target conicity and wide tread wear spreading[J]. Wear, 2011, 271(1): 195-202.
    [8]
    CUI D, LI L, JIN X, et al. Optimal design of wheel profiles based on weighed wheel/rail gap[J]. Wear, 2011, 271: 218-226. doi: 10.1016/j.wear.2010.10.005
    [9]
    LIN F, ZHOU S, DONG X, et al. Design method of LM thin flange wheel profile based on NURBS[J]. Vehicle System Dynamics, 2019(9): 17-32.
    [10]
    干锋, 戴焕云, 池茂儒, 等. 铁道车辆车轮踏面反向设计方法研究[J]. 铁道学报, 2015, 37(9): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509003.htm

    GAN Feng, DAI Huanyun, CHI Maoru, et al. A reverse optimal design method for wheel tread of railway vehicle[J]. Journal of the China Railway Society, 2015, 37(9): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509003.htm
    [11]
    张剑, 温泽峰, 孙丽萍, 等. 基于钢轨型面扩展法的车轮型面设计[J]. 机械工程学报, 2008, 44 (3): 44-49. doi: 10.3321/j.issn:0577-6686.2008.03.008

    ZHANG Jian, WEN Zefeng, SUN Liping, et al. Wheel profile design based on rail profile expansion method[J]. Journal of Mechanical Engineering, 2008, 44 (3): 44-49. doi: 10.3321/j.issn:0577-6686.2008.03.008
    [12]
    崔大宾, 赵锐, 李俊, 等. 面向轮缘磨耗的动车组车轮型面多目标优化设计[J]. 机械工程学报, 2019, 55(16): 104-113. doi: 10.3901/JME.2019.16.104

    CUI Dabin, ZHAO Rui, LI Jun, et al. Multi-objective optimization of EMU wheel profile oriented to flange wear control[J]. Journal of Mechanical Engineering, 2019, 55(16): 104-113. doi: 10.3901/JME.2019.16.104
    [13]
    SPANGENBERG U, FRÖHLING R D, ELS P S. Long-term wear and rolling contact fatigue behaviour of a conformal wheel profile designed for large radius curves[J]. Vehicle System Dynamics, 2018, 57: 44-63.
    [14]
    PERSSON I, IWNICKI S D. Optimisation of railway profiles using a genetic algorithm[J]. Vehicle System Dynamics, 2004, 41: 517-527.
    [15]
    NOVALES M, ORRO A, BUGARÍN M R. Use of a genetic algorithm to optimise wheel profile geometry[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221: 467-476.
    [16]
    CHOI H Y, LEE D H, LEE J. Optimization of a railway wheel profile to minimize flange wear and surface fatigue[J]. Wear, 2013, 300: 225-233.
    [17]
    YE Y, QI Y, SHI D, et al. Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive[J]. Railway Engineering Science, 2020, 28(2): 160-183.
    [18]
    YE Y, VUITTON J, SUN Y, et al. Railway wheel profile fine-tuning system for profile recommendation[J]. Railway Engineering Science, 2021, 29: 74-93.
    [19]
    文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. doi: 10.3901/JME.2020.10.191

    WEN Yongpeng, ZHENG Xiaoming, WU Aizhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. doi: 10.3901/JME.2020.10.191
    [20]
    郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201905011.htm

    ZHENG Xiaoming, WEN Yongpeng, SHANG Huilin, et al. Evolutionary structure topology optimiasation method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201905011.htm
    [21]
    EKBERG A, KABO E, ANDERSSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909.
    [22]
    BS EN 15313. UNE-EN 15313-2017 Railway applications. In-service wheelset operation requirements[S]. Madrid: UNE, 2016.
    [23]
    黄彩虹, 罗仁, 曾京, 等. 系统参数对高速列车车轮踏面凹陷磨耗的影响[J]. 交通运输工程学报, 2016, 16(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201603007.htm

    HUANG Caihong, LUO Ren, ZENG Jing, et al. Effect of system parameters on tread-hollow wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201603007.htm
    [24]
    国家市场监督管理总局, 国家标准化管理委员会. GB/T 5599-2019机车车辆动力学性能评定及试验鉴定规范[S]. 北京: 中国标准出版社, 2019.

    State Market Regulatory Administration, SAC. GB/T 5599-2019 Specification for dynamic performance assessment and testing verification of rolling stock[S]. Beijing: Standards Press of China, 2019.
    [25]
    石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101005.htm

    SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation Criteria of high speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101005.htm
    [26]
    LEWIS R, DWYER-JOYCE R S, OLOFSSON U, et al. Mapping railway wheel material wear mechanisms and transitions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224: 125-137.
  • 加载中

Catalog

    Figures(17)  / Tables(2)

    Article Metrics

    Article views(27) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return