Volume 58 Issue 24
Dec 2022
Turn off MathJax
Article Contents
YANG Lechang, HAN Dongxu, WANG Pidong. Imprecise Probabilistic Model Updating Using A Wasserstein Distance-based Uncertainty Quantification Metric[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 300-311. doi: 10.3901/JME.2022.24.300
Citation: YANG Lechang, HAN Dongxu, WANG Pidong. Imprecise Probabilistic Model Updating Using A Wasserstein Distance-based Uncertainty Quantification Metric[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 300-311. doi: 10.3901/JME.2022.24.300

Imprecise Probabilistic Model Updating Using A Wasserstein Distance-based Uncertainty Quantification Metric

doi: 10.3901/JME.2022.24.300
  • Received Date: 22 Mar 2022
  • Rev Recd Date: 05 Sep 2022
  • Available Online: 07 Mar 2024
  • Issue Publish Date: 20 Dec 2022
  • Uncertainty factors are usually contained in the mathematical proxy model of complex physical system. In practical engineering problems such as mechanical system reliability optimization design, the key parameters of the model can be calibrated and the model structure can be modified to improve the fidelity of the proxy model. However, for imprecise probabilistic models with mixed uncertainties, the traditional model updating method based on the Euclidean distance is not applicable. To solve this problem, a new model updating method based on the Wasserstein distance measure is proposed, which builds the kernel function based on the Wasserstein distance measure, and uses the geometric properties of Wasserstein distance in P-dimensional parameter space to quantify the differences between different probability distributions. Compared with the existing model updating methods, high-order hyper-parameters of the model can be calibrated to significantly reduce the uncertainty of model structure and parameters. In order to reduce the calculation cost, the approximate Bayesian inference and sliced segmentation technology is further adopted to meet the engineering requirements. The validity of this method for practical engineering problems, such as statics and dynamics, is verified by the constitutive parameter checking problem of forced vibration steel plate and the multidisciplinary uncertainty quantification problem of NASA Langley.

     

  • loading
  • [1]
    王龙华. 数学模型校准问题研究[D]. 长沙: 国防科学技术大学, 2012.

    WANG Longhua. Research on the calibration of mathematical model[D]. Changsha: National University of Defense Technology, 2012.
    [2]
    朱战霞, 张红文, 罗秋月. 自由漂浮空间机器人神经网络自适应控制律设计[J]. 西北工业大学学报, 2017, 35(1): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201701010.htm

    ZHU Zhanxia, ZHANG Hongwen, LUO Qiuyue. Design of neural network adaptive control law for free-floating space robot[J]. Journal of Northwestern Polytechnical University, 2017, 35(1): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201701010.htm
    [3]
    喻天翔, 赵庆岩, 尚柏林, 等. 考虑间隙不确定性的花键概率疲劳寿命预测方法[J/OL]. 机械工程学报, 1-12[2022-04-05]. http://kns.cnki.net/kcms/detail/11.2187.TH.20210514.1138.002.html

    YU Tianxiang, ZHAO Qingyan, SHANG Bolin, et al. Probabilistic fatigue life prediction method of spline considering clearance uncertainty[J]. Journal of Mechanical Engineering, 1-12[2022-04-05]. http://kns.cnki.net/kcms/detail/11.2187.TH.20210514.1138.002.html
    [4]
    张小强. 随机与认知不确定性下机械系统可靠性分析与优化设计方法研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Xiaoqiang. Research on reliability analysis and optimization design method of mechanical system under stochastic and cognitive uncertainty[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [5]
    李彦锋, 黄洪钟, 黄意贤. 太阳翼驱动机构的故障模式影响分析与时变可靠性研究[J]. 机械工程学报, 2020, 56(5): 108-115. doi: 10.3901/JME.2020.05.108

    LI Yanfeng, HUANG Hongzhong, HUANG Yixian. Analysis of failure mode influence and time-varying reliability of solar wing driving mechanism[J]. Journal of Mechanical Engineering, 2020, 56(5): 108-115. doi: 10.3901/JME.2020.05.108
    [6]
    KHODAPARAST H H, MOTTERSHEAD J E, BADCOCK K J. Interval model updating with irreducible uncertainty using the Kriging predictor[J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1204-1226. doi: 10.1016/j.ymssp.2010.10.009
    [7]
    ABU HUSAIN N, KHODAPARAST H H, OUYANG H. Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment[J]. Mechanical Systems and Signal Processing, 2012, 32: 135-152. doi: 10.1016/j.ymssp.2012.04.001
    [8]
    彭卫文, 黄洪钟, 李彦锋, 等. 基于数据融合的加工中心功能铣头贝叶斯可靠性评估[J]. 机械工程学报, 2014, 50(6): 185-191. http://www.cjmenet.com.cn/CN/Y2014/V50/I6/185

    PENG Weiwen, HUANG Hongzhong, LI Yanfeng, et al. Bayesian reliability evaluation of machining center functional milling head based on data fusion[J]. Journal of Mechanical Engineering, 2014, 50(6): 185-191. http://www.cjmenet.com.cn/CN/Y2014/V50/I6/185
    [9]
    BI S, PRABHU S, COGAN S, et al. Uncertainty quantification Metrics with varying statistical information in model calibration and validation[J]. AIAA Journal, 2017, 55(10): 3570-3583. doi: 10.2514/1.J055733
    [10]
    YANG L C, BI S F, FAES M G R, et al. Bayesian inversion for imprecise probabilistic models using a novel entropy-based uncertainty quantification metric[J]. Mech. Syst. Signal Proc., 2022, 162: 21.
    [11]
    BI S, BROGGI M, BEER M. The role of the Bhattacharyya distance in stochastic model updating[J]. Mechanical Systems and Signal Processing, 2019, 117: 437-452. doi: 10.1016/j.ymssp.2018.08.017
    [12]
    张建军, 乔松珊. 正态总体下参数的优化极大似然估计方法[J]. 统计与决策, 2012(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201202005.htm

    ZHANG Jianjun, QIAO Songshan. Optimized maximum likelihood estimation method for parameters in normal population[J]. Statistics and Decision, 2012(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201202005.htm
    [13]
    MOTTERSHEAD J E, FRISWELL M I. Model updating in structural dynamics: A survey[J]. Journal of Sound and Vibration, 1993, 167(2): 347-375. doi: 10.1006/jsvi.1993.1340
    [14]
    ROY C J, OBERKAMPF W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28): 2131-2144. doi: 10.1016/j.cma.2011.03.016
    [15]
    RENS V D S, SARAH D, RUTH K, et al. Bayesian statistics and modelling[J]. Nature Reviews Methods Primers, 2021, 1(1): 3. https://doi.org/10.1038/ s43586-020-00003-0 doi: 10.1038/s43586-020-00003-0
    [16]
    CRANMER K, BREHMER J, LOUPPE G. The frontier of simulation-based inference[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30055-30062. doi: 10.1073/pnas.1912789117
    [17]
    BARAGATTI M, PUDLO P. An overview on approximate Bayesian computation[J]. ESAIM: Proceedings, 2014, 44: 291-299. doi: 10.1051/proc/201444018
    [18]
    CHING J, CHEN Y C. Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133: 816-832.
    [19]
    RUBNER Y, TOMASI C, GUIBAS L J. The Earth mover's distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99-121.
    [20]
    PANARETOS V M, ZEMEL Y. Statistical aspects of wasserstein distances[J]. Annual Review of Statistics and Its Application, 2019, 6: 405-431.
    [21]
    NADJAHI K, DE BORTOLI V, DURMUS A, et al. Approximate Bayesian computation with the sliced-wasserstein distance[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 1, 2020, Barcelona. SPAIN: IEEE, 2020: 5470-5474.
    [22]
    FANG S E, ZHANG Q H, REN W X. An interval model updating strategy using interval response surface models[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 909-927.
    [23]
    CRESPO L G, KENNY S P, GIESY D P. The NASA langley multidisciplinary uncertainty quantification challenge[C]//AIAA Non-Deterministic Approaches conference, January 13-17, 2014, Maryland. National Harbor: AIAA, 2014: 13-47.
    [24]
    SAFTA C, SARGSYAN K, NAJM H N, et al. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem[J]. Journal of Aerospace Information Systems, 2015, 12(1): 219-234.
    [25]
    SRIVASTAVA A, SUBRAMANIYAN A K, WANG L. Hybrid Bayesian solution to NASA langley research center multidisciplinary uncertainty quantification challenge[J]. Journal of Aerospace Information Systems, 2015, 12(1): 114-139.
  • 加载中

Catalog

    Figures(14)  / Tables(6)

    Article Metrics

    Article views(25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return