Citation: | Witbooi Peter Joseph, Vyambwera Sibaliwe Maku, Nsuami Mozart Umba. Control and elimination in an SEIR model for the disease dynamics of COVID-19 with vaccination[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.3934/math.2023411 |
[1] |
S. Y. Tchoumi, M. L. Diagne, H. Rwezaura, J. M. Tchuenche, Malaria and COVID-19 co-dynamics: A mathematical model and optimal control, Appl. Math. Model., 99 (2021), 294–327. https://doi.org/10.1016/j.apm.2021.06.016
|
[2] |
T. A. Perkins, G. Espana, Optimal Control of the COVID-19 Pandemic with Non-pharmaceutical Interventions, Math. Biol., 82 (2020). https://doi.org/10.1007/s11538-020-00795-y
|
[3] |
M. Kantner, T. Koprucki, Beyond just "flattening the curve": Optimal control of epidemics with purely non-pharmaceutical interventions, J. Ind. Math., 10 (2020). https://doi.org/10.1186/s13362-020-00091-3
|
[4] |
Y. Yuan, N. Li, Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness, Phys. A, 603 (2022), 127804. https://doi.org/10.1016/j.physa.2022.127804
|
[5] |
R. T. Alqahtani, A. Ajbar, Study of dynamics of a COVID-19 model for saudi arabia with vaccination rate, saturated treatment function and saturated incidence rate, Mathematics, 9 (2021), 3134. https://doi.org/10.3390/math9233134
|
[6] |
B. Boukanjime, T. Caraballo, M. El Fatini, M. El Khalifi, Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching, Chaos Solit. Fractals, 141 (2020), 110361. https://doi.org/10.1016/j.chaos.2020.110361
|
[7] |
Disaster Management Act. Regulations to address, prevent and combat the spread of coronavirus COVID-19: amendment. https://www.gov.za/documents/disaster-management-act-regulations-address-prevent-and-combat-spread-coronavirus-covid-19. (Accessed June 24, 2020).
|
[8] |
L. E. Olivier, S. Botha, I. K. Craig, Optimized Lockdown Strategies for Curbing the Spread of COVID-19: A South African Case Study, IEEE Access : Practical Innovations, Open Solutions, 8 (2020), 205755–205765. https://doi.org/10.1109/ACCESS.2020.3037415
|
[9] |
W. H. Fleming, H. M. Soner, Controlled Markov processes and viscosity solutions. Second edition, Stoch. Model. Appl. Probab., 25. Springer, New York, 2006. XVII, 429 pages. https://doi.org/10.1007/0-387-31071-1
|
[10] |
M. Cerón Gómez, E. I. Mondragon, P. L. Molano, Global stability analysis for a model with carriers and non-linear incidence rate, J. Biol. Dyn., 14 (2020), 409–420. https://doi.org/10.1080/17513758.2020.1772998
|
[11] |
P. C. Jentsch, M. Anand, C. T. Bauch, Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study, Lancet Infect Dis., 21 (2021), 1097–1106. https://doi.org/10.1101/2020.09.25.20201889
|
[12] |
M. A. Khan, A. Atangana, Mathematical modeling and analysis of COVID-19: A study of new variant Omicron, Phys. A, 599 (2022), 127452. https://doi.org/10.1016/j.physa.2022.127452
|
[13] |
Z. A. Khan, A. L. Alaoui, A. Zeb, M. Tilioua, S. Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, Results Phys., 27 (2021), 104477. https://doi.org/10.1016/j.rinp.2021.104477
|
[14] |
M. Kinyili, J. B. Munyakazi, A. Y. A. Mukhtar, Assessing the impact of vaccination on COVID-19 in South Africa using mathematical modeling, Appl. Math. Inf. Sci., 15 (2021), 701–716. http://dx.doi.org/10.18576/amis/150604
|
[15] |
S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, (1st Ed.). Chapman and Hall/CRC. (2007). https://doi.org/10.1201/9781420011418
|
[16] |
A. K. Mengistu, P. J. Witbooi, Tuberculosis in Ethiopia: Optimal Intervention Strategies and Cost-Effectiveness Analysis, Axioms, 11 (2022), 343. https://doi.org/10.3390/axioms11070343
|
[17] |
S. Mushayabasa, E. T. Ngarakana-Gwasira, J. Mushanyu, On the role of governmental action and individual reaction on COVID-19 dynamics in South Africa: A mathematical modelling study, Inform. Med. Unlocked., 20 (2020), 100387. https://doi.org/10.1016/j.imu.2020.100387
|
[18] |
S. P. Gatyeni, C. W. Chukwu, F. Chirove, Fatmawati, F. Nyabadza, Application of Optimal Control to Long Term Dynamics of COVID-19 Disease in South Africa, Sci. Afr., 16 (2020), e01268. https://doi.org/10.1016/j.sciaf.2022.e01268
|
[19] |
E. Tornatore, P. Vetro, S. M. Buccellato, SIVR epidemic model with stochastic perturbation, Neural Comput. Appl., 24 (2014), 309–315. https://doi.org/10.1007/s00521-012-1225-6
|
[20] |
N. Dalal, D. Greenhalgh, X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325 (2007), 36–53. ISSN 0022-247X. https://doi.org/10.1016/j.jmaa.2006.01.055
|
[21] |
O. S. Obabiyi, A. Onifade, Mathematical model for Lassa fever transmission dynamics with variable human and reservoir population, Int. J. Differ. Equ., 16 (2017), 67–91. http://dx.doi.org/10.12732/ijdea.v16i1.4703
|
[22] |
C. M. Peak, R. Kahn, Y. H. Grad, L. M. Childs, R. Li, M. Lipsitch, et al., Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study, Lancet Infect Dis., 20 (2020), 1025–1033. https://doi.org/10.1016/S1473-3099(20)30361-3
|
[23] |
J. Lamwong, P. Pongsumpun, I. M. Tang, N. Wongvanich, The Lyapunov Analyses of MERS-Cov Transmission in Thailand, Curr. Appl. Sci. Technol., 19 (2019), 112–122. https://li01.tci-thaijo.org/index.php/cast/article/view/182299
|
[24] |
R. P. Sigdel, C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684–689. https://doi.org/10.1016/j.amc.2014.06.020
|
[25] |
A. Atangana, S. Iǧret Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications, Adv. Differ. Equ., 2020 (2020). https://doi.org/10.1186/s13662-020-03095-w
|
[26] |
G. T. Tilahun, H. T. Alemneh, Mathematical modeling and optimal control analysis of COVID-19 in Ethiopia, J. Interdiscip. Math., 24 (2021), 2101–2120. https://doi.org/10.1080/09720502.2021.1874086
|
[27] |
B. Traore, O. Koutou, B. Sangare, Global dynamics of a seasonal mathematical model of schistosomiasis transmission with general incidence function J. Biol. Syst., 27 (2019), 19–49. https://doi.org/10.1142/S0218339019500025
|
[28] |
A. Rahmani, G. Dini, V. Leso, A. Montecucco, B. Kusznir Vitturi, I. Iavicoli, et al., Duration of SARS-CoV-2 shedding and infectivity in the working age population: A systematic review and meta-analysis, Med. Lav., 113 (2022), e2022014. https://doi.org/10.23749/mdl.v113i2.12724
|
[29] |
Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa. "Risk factors for coronavirus disease 2019 (COVID-19) death in a population cohort study from the Western Cape Province, South Africa". Clin. Infect. Dis., 73 (2021), e2005–e2015. 10.1093/cid/ciaa1198
|
[30] |
A. R. Tuite, D. N. Fisman, A. L. Greer, Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada, CMAJ, 192 (2020), E497–E505. https://doi.org/10.1503/cmaj.200476
|
[31] |
P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental model of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
|
[32] |
C. R. Wells, J. P. Townsend, A. Pandey, S. M. Moghadas, G. Krieger, B. Singer, et al., Optimal COVID-19 quarantine and testing strategies, Nat. Commun., 212, (2021). https://doi.org/10.1038/s41467-020-20742-8
|
[33] |
P. J. Witbooi, An SEIR model with infected immigrants and recovered emigrants, Adv. Differ. Equ., 2021, (2021). https://doi.org/10.1186/s13662-021-03488-5
|
[34] |
P. J. Witbooi, C. Africa, A. Christoffels, I. H. I. Ahmed, A population model for the 2017/18 listeriosis outbreak in South Africa, Plos One, 15 (2020), e0229901. https://doi.org/10.1371/journal.pone.0229901
|
[35] |
Worldometers. Available from: https://covid19.who.int/region/afro/country/za
|
[36] |
H. Zine, E. M. Lotfi, M. Mahrouf, A. Boukhouima, Y. Aqachmar, K. Hattaf, et al., Modeling the spread of COVID-19 pandemic in Morocco. In; Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact, Springer, Singapore, (2021), 599–615. https://doi.org/10.1007/978-981-16-2450-6_28
|