Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Zhang Yun-Feng, Jia Huan-Yu, Wang Hui. Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
Citation: Zhang Yun-Feng, Jia Huan-Yu, Wang Hui. Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662

Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)

doi: 10.7498/aps.70.20201662
More Information
  • Corresponding author: Jia Huan-Yu, E-mail: hyjia@swjtu.edu.cn
  • Received Date: 09 Oct 2020
  • Rev Recd Date: 23 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • The ground level enhancement (GLE) event energy spectrum provides important information about the acceleration and propagation of cosmic ray. In this paper, we analyze the proton flux peak energy spectrum of recent GLE event (2017.09 GLE72) by using GOES15 satellite and neutron monitor experiment data. The method of adjacent averaging smoothing and weighted average are applied to study GOES15 satellite data, and obtain the flux peak and flux peak time. By fitting, the energy spectrum index of proton flux peak is 1.88 in the satellite observation energy range. Again, the energy spectrum index of the neutron monitor observation energy range, 4.86, is obtained by using the new neutron monitor yield function. It can be seen that the peak energy spectrum index given by satellites in the lower energy range (5–433 MeV) is much smaller than that given by the neutron monitor in the higher energy range (0.44–19 GeV). This means that, the energy spectrum in the lower energy range is harder than that in the higher energy range. Hence, the results of the energy spectrum could be explained qualitatively by the re-acceleration mechanism of high energy solar particles. In the low corona region, first, the particles released by the solar flare are accelerated, and the energy spectrum index of the high-energy range is twice that of the low-energy range. Then part of the solar high energy particles from the low corona enter into the CME, where they will be re-acceleration by the shock wave. The GLE72 event high energy range energy spectrum index given by the neutron monitor experiment is 4.86, so the energy spectrum index in low energy range should be 4.86/2 = 2.43. However, the low energy range energy spectrum index is 1.88 (lower than 2.43 in low energy range). The reason may be that the energy spectrum index is further reduced due to the re-acceleration effect in the shock wave generated by the CME. The observation of GLE event is one of the main research subjects of the Large High Altitude Air Shower Observatory (LHAASO). Also, the GLE72 proton peak energy spectrum results provide important information to observe solar high energy particles in the LHAASO experiment.

     

  • loading
  • [1]
    Hess V F 1912 Phys. Z. 13 1084
    [2]
    Simpson J A 1990 Proceedings of the 21th International Cosmic Ray Conference Adelaide, Australia, January 6–19, 1990 p187
    [3]
    Auger P, Ehrenfest P, Maze R 1939 Rev. Mod. Phys. 11 288 doi: 10.1103/RevModPhys.11.288
    [4]
    Karpov S N, Miroshnichenko L I, Vashenyuk E V 1998 Nuovo Cimento C 21 551 https://ui.adsabs.harvard.edu/abs/1998NCimC..21..551K
    [5]
    Shea M A, Smart D F 1990 Sol. Phys. 127 297 doi: 10.1007/BF00152170
    [6]
    Forbush S E 1946 Phys. Rev. 70 771 doi: 10.1103/PhysRev.70.771
    [7]
    Oh S Y, Yi Y, Bieber J W 2010 J. Geophys. Res. Space Phys. 115 A10107 doi: 10.1029/2009JA015171
    [8]
    Vashenyuk E V, Balabin Y V, Perez-Peraza J, Gallegos-Cruz A, Miroshnichenko L I 2006 Adv. Space Res. 38 411 doi: 10.1016/j.asr.2005.05.012
    [9]
    Mottl D, Nymmik R 2007 Adv. Space Res. 39 1355 doi: 10.1016/j.asr.2007.01.055
    [10]
    Bruno A, Christian E R, De Nolfo G A, Richardson I G, Ryan J M 2019 Space Weather 17 419 doi: 10.1029/2018SW002085
    [11]
    Gopalswamy N, Yashiro S, Mäkelä P, Xie H, Akiyama S, Monstein C 2018 Astrophys. J. Lett. 863 L39 doi: 10.3847/2041-8213/aad86c
    [12]
    Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R 2018 Sol. Phys. 293 136 doi: 10.1007/s11207-018-1354-x
    [13]
    Mishev A L, Usoskin I G, Kovaltsov G A 2013 J. Geophys. Res. Space Phys. 118 2783 doi: 10.1002/jgra.50325
    [14]
    Dorman L, Tassev Y, Velinov P I Y, Mishev A, Tomova D, Mateev L 2019 J. Phys. Conf. Ser. 1181 012070 doi: 10.1088/1742-6596/1181/1/012070
    [15]
    Mavromichalaki H, Gerontidou M, Paschalis P 2018 Space Weather 16 1797 doi: 10.1029/2018SW001992
    [16]
    Shea M A, Smart D F 2012 Space Sci. Rev. 171 161 doi: 10.1007/s11214-012-9923-z
    [17]
    Abbasi R, Ackermann M, Adams J 2008 Astrophys. J. 689 L65 doi: 10.1086/595679
    [18]
    Mishev A L, Kocharov L G, Usoskin I G 2014 J. Geophys. Res. Space Phys. 119 670 doi: 10.1002/2013JA019253
    [19]
    Lockwood J A, Webber W R, Hsieh L 1974 J. Geophys. Res. 79 4149 doi: 10.1029/JA079i028p04149
    [20]
    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 114 171103 doi: 10.1103/PhysRevLett.114.171103
    [21]
    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 15 211101 doi: 10.1103/PhysRevLett.115.211101
    [22]
    Petrosian V 2016 Astrophys. J. 830 28 doi: 10.3847/0004-637X/830/1/28
    [23]
    Ramaty R, Forman M A 1987 NASA Conference Publication 2464 47 https://ui.adsabs.harvard.edu/abs/1987NASCP2464...47R
    [24]
    Dröege W, Schlickeiser R 1986 Astrophys. J. 305 909 doi: 10.1086/164305
    [25]
    Tassev Y, Velinov P I Y, Tomova D, Mateev L 2017 C.R. Acad. Bulg. Sci. 70 1437
    [26]
    Ellison D C, Ramaty R 1985 Astrophys. J. 298 400 doi: 10.1086/163623
  • 加载中

Catalog

    Figures(7)

    Article Metrics

    Article views(137) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return