Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao. A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
Citation: Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao. A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674

A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology

doi: 10.7498/aps.70.20201674
More Information
  • Corresponding author: Song Jian-Jun, E-mail: jianjun_79_81@xidian.edu.cn
  • Received Date: 10 Oct 2020
  • Rev Recd Date: 03 Feb 2021
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • With the development of modern communication technology, unlimited energy harvesting technology has become more and more popular. Among them, the weak energy density wireless energy harvesting technology has broken through the limitations in traditional transmission lines and can use the “waste” energy in the environment, which has become very popular. The Schottky diode is the core device of the 2.45 G weak energy density wireless energy harvesting system, and its performance determines the upper limit of the system's rectification efficiency. From the material design point of view, using crystal orientation optimization technology and Sn alloying technology, we propose and design a Ge-based compound semiconductor with large effective mass, large affinity, and high electron mobility. On this basis, the device simulation tool is further used to set reasonable device material physical parameters and geometric structure parameters, and a Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission is realized. The simulation of the ADS rectifier circuit based on the SPICE model of the device shows that comparing with the conventional Schottky diode, the turn-on voltage of the device is reduced by about 0.1 V, the zero-bias capacitance is reduced by 6 fF, and the reverse saturation current is also significantly increased. At the same time, the designed new Ge-based Schottky diode is used as the core rectifier device to simulate the rectifier circuit. The results show that the new-style Ge-based Schottky diode is in the weak energy working area with input energy in a range of –10 — –20 dBm. The energy conversion efficiency is increased by about 10%. The technical solutions and relevant conclusions of this article can provide a useful reference for solving the problem of low rectification efficiency of the 2.45 G weak energy density wireless energy harvesting system.

     

  • loading
  • [1]
    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401 doi: 10.7498/aps.69.20191415

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401 doi: 10.7498/aps.69.20191415
    [2]
    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153
    [3]
    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538
    [4]
    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1
    [5]
    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433 doi: 10.1109/TMTT.2018.2804956
    [6]
    Wonwoo L, Yonghee J 2018 Micromachines. 10 12 doi: 10.3390/mi10010012
    [7]
    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486 doi: 10.1109/TAP.2015.2431719
    [8]
    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965 doi: 10.1109/TMTT.2014.2305134
    [9]
    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029 doi: 10.1007/s11276-018-1701-8
    [10]
    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334 doi: 10.1109/TII.2018.2874460
    [11]
    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292
    [12]
    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639
    [13]
    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)
    [14]
    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986 doi: 10.1166/jno.2018.2342
    [15]
    杨雯, 宋建军, 任远, 张鹤鸣 2018 物理学报 67 198502 doi: 10.7498/aps.67.20181155

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502 doi: 10.7498/aps.67.20181155
    [16]
    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315
    [17]
    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438 doi: 10.1109/ACCESS.2019.2937167
    [18]
    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88 doi: 10.1038/nphoton.2014.321
    [19]
    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026 doi: 10.1088/1361-6641/ab92ce
    [20]
    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705 doi: 10.1063/1.4942526
    [21]
    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445
    [22]
    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43 doi: 10.1016/j.physb.2014.03.008
  • 加载中

Catalog

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(156) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return