Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 102101. doi: 10.7498/aps.70.20201734
Citation: Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 102101. doi: 10.7498/aps.70.20201734

Test of nuclear mass models

doi: 10.7498/aps.70.20201734
More Information
  • Corresponding author: Li Tao, E-mail: litao@gxnu.edu.cn
  • Received Date: 19 Oct 2020
  • Rev Recd Date: 30 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • The reliability and prediction ability of 8 global nuclear mass models is systematically analyzed in terms of the accuracy of the model and the new neutron magic number predicted by experiments based on the ground-state nuclear mass data from AME2016. The root-mean-square (RMS) deviations of nuclear mass predicted by 8 nuclear mass models are calculated by subregion, and find that the Bhagwat and WS4 models possess better accuracy to describe the existing experimental data. By analyzing the trend of the neutron shell energy gap varying with neutron number, it is found that the KTUY, WS3 and WS4 models can well represent the mutation behavior caused by the new magic number N = 32, and it is predicted that N = 32 is likely to be a new magic number in the Cl isotope chain and Ar isotope chain. By analyzing the variation trend of α decay energy in the superheavy region, it is found that the FRDM12, WS3 and WS4 models can reproduce the phenomena of subshell with N = 152 and N = 162 well, and predict the relatively long life of nuclei at the neutron number N = 184 for the isotope chain with proton number Z = 108—114. The comprehensive analysis shows that the mass model with good accuracy cannot reproduce shell evolution behavior. For example, the Bhagwat model has the same accuracy as the WS4 model, but it cannot reproduce the mutation behavior of the new magic number N = 32, 152 and 162. But the KTUY model and FRDM12 model can reproduce the new magic number behavior of N = 32, 152 and 162, respectively, although the RMS deviation is slightly larger. The RMS deviation of WS4 model is small and can describe the shell evolution behavior in the nuclear mass well.

     

  • loading
  • [1]
    Roubin A, Atanasov D, Blaum K, George S, Herfurth F, Kisler D, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Mougeot M, Neidherr D, Rosenbusch M, Schweikhard L, Welker A, Wienholtz F, Wolf R N, Zuber K 2017 Phys. Rev. C 96 014310 doi: 10.1103/PhysRevC.96.014310
    [2]
    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322 doi: 10.1103/PhysRevC.81.044322
    [3]
    Wang Y Z, Gao Y H, Cui J P, Gu J Z 2020 Commun. Theor. Phys. 72 025303 doi: 10.1088/1572-9494/ab6906
    [4]
    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320 doi: 10.1103/PhysRevC.90.024320
    [5]
    Xu X, Wang M, Zhang Y H, Xu H S, Shuai P, Tu X L, Yuri A L, Zhou X H, Sun B H, Yuan Y J, Xia J W, Yang J C, Klaus B, Chen R J, Chen X C, Fu C Y, Ge Z, Hu Z G, Huang W J, Liu D W, Lan Y H, Ma X W, Mao R S, Uesaka T, Xiao G Q, Xing Y M, Yamaguchi T, Yamaguchi Y, Zeng Q, Yan X L, Zhao H W, Zhao T C, Zhang W, Zhan W L 2015 Chin. Phys. C 39 104001 doi: 10.1088/1674-1137/39/10/104001
    [6]
    Rosenbusch M, Ascher P, Atanasov D, Barbieri C, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, Cipollone A, George S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Navrátil P, Neidherr D, Schweikhard L, Somà V, Stanja J, Wienholtz, F, Wolf R N, Zuber K 2015 Phys. Rev. Lett. 114 202501 doi: 10.1103/PhysRevLett.114.202501
    [7]
    Reiter M P, Ayet San Andrés S, Dunling E, Kootte B, Leistenschneider E, Andreoiu C, Babcock C, Barquest B R, Bollig J, Brunner T, Dillmann I, Finlay A, Gwinner G, Graham L, Holt J D, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, McKay J E, Paul S F, Steinbrügge R, Thompson R, Tracy J L, Jr, Wieser M E, Will C, Dickel T, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. C 98 024310 doi: 10.1103/PhysRevC.98.024310
    [8]
    Leistenschneider E, Reiter M P, Ayet San Andrés S, Kootte B, Holt J D, Navrátil P, Babcock C, Barbieri C, Barquest B R, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach K G, Lippert W, McKay J E, Paul S F, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg S R, Thompson R, Wieser M E, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. Lett. 120 062503 doi: 10.1103/PhysRevLett.120.062503
    [9]
    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506 doi: 10.1103/PhysRevLett.121.022506
    [10]
    Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre T D, Fedorov D, Fedosseev V, George S, Herfurth F, Holt J D, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg S R, Welker A, Wienholtz F, Wolf R N, Zuber K 2018 Phys. Rev. Lett. 120 232501 doi: 10.1103/PhysRevLett.120.232501
    [11]
    Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios T E, Eliseev S, Herlert A, Holt J D, Huang W J, Litvinov Y A, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K 2020 Phys. Rev. Lett. 124 092502 doi: 10.1103/PhysRevLett.124.092502
    [12]
    Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M, Stoitsov M 2012 Nature 486 509 doi: 10.1038/nature11188
    [13]
    Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207 doi: 10.1126/science.1225636
    [14]
    Hamilton J H, Hofmann S, Oganessian Y T 2013 Annu. Rev. Nucl. Part. Sci. 63 383 doi: 10.1146/annurev-nucl-102912-144535
    [15]
    周善贵 2014 物理 43 817 doi: 10.7693/wl20141206

    Zhou S G 2014 Physics 43 817 doi: 10.7693/wl20141206
    [16]
    周善贵 2017 原子核物理评论 34 318 doi: 10.11804/NuclPhysRev.34.03.318

    Zhou S G 2017 Nucl. Phys. Rev. 34 318 doi: 10.11804/NuclPhysRev.34.03.318
    [17]
    Li P C, Zhang H F, Wang Y J 2017 Chin. Phys. C 41 114103 doi: 10.1088/1674-1137/41/11/114103
    [18]
    Düllmann C E, Block M 2018 Sci. Am. 318 46 doi: 10.1038/scientificamerican0318-46
    [19]
    Nazarewicz W 2018 Nat. Phys. 14 537 doi: 10.1038/s41567-018-0163-3
    [20]
    李竹, 牛中明, 孙保华, 王宁, 孟杰 2012 物理学报 61 072601 doi: 10.7498/aps.61.072601

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601 doi: 10.7498/aps.61.072601
    [21]
    何建军, 周小红, 张玉虎 2013 物理 42 484 http://www.wuli.ac.cn/CN/abstract/abstract55150.shtml

    He J J, Zhou X H, Zhang Y H 2013 Physics 42 484 http://www.wuli.ac.cn/CN/abstract/abstract55150.shtml
    [22]
    李竹, 孙保华, 孟杰 2013 物理 42 505 http://www.wuli.ac.cn/CN/abstract/abstract55152.shtml

    Li Z, Sun B H, Meng J 2013 Physics 42 505 http://www.wuli.ac.cn/CN/abstract/abstract55152.shtml
    [23]
    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšic T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172 doi: 10.1016/j.physletb.2013.04.048
    [24]
    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330 doi: 10.1103/PhysRevC.100.024330
    [25]
    Li Z, Miu Z M, Sun B H 2019 Sci. China, Ser. G 62 982011 doi: 10.1007/s11433-018-9355-y
    [26]
    唐晓东, 李阔昂 2019 物理 48 633 doi: 10.7693/wl20191002

    Tang X D, Li K A 2019 Physics 48 633 doi: 10.7693/wl20191002
    [27]
    Möler P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1 doi: 10.1016/j.adt.2018.03.003
    [28]
    王猛, 张玉虎, 周小红 2020 中国科学: 物理学力学天文学 50 052006 doi: 10.1360/SSPMA-2019-0308

    Wang M, Zhang Y H, Zhou X H 2020 Sci. Sin.Phys. Mech. Astron. 50 052006 doi: 10.1360/SSPMA-2019-0308
    [29]
    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003 doi: 10.1088/1674-1137/41/3/030003
    [30]
    Möler P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1 doi: 10.1016/j.adt.2015.10.002
    [31]
    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305 doi: 10.1143/PTP.113.305
    [32]
    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304 doi: 10.1103/PhysRevC.82.044304
    [33]
    Liu M, Wang N, Deng Y G, Wu X Z 2011 Phys. Rev. C 84 014333 doi: 10.1103/PhysRevC.84.014333
    [34]
    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215 doi: 10.1016/j.physletb.2014.05.049
    [35]
    Bhagwat A 2014 Phys. Rev. C 90 064306 doi: 10.1103/PhysRevC.90.064306
    [36]
    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 024308 doi: 10.1103/PhysRevC.88.024308
    [37]
    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 061302(R doi: 10.1103/PhysRevC.88.061302
    [38]
    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337 doi: 10.1103/PhysRevC.93.034337
    [39]
    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785 doi: 10.1143/PTP.113.785
    [40]
    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1 doi: 10.1016/j.adt.2017.09.001
    [41]
    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23(R doi: 10.1103/PhysRevC.52.R23
    [42]
    Zuker A P 2008 Rev. Mex. Fís. 54 129
    [43]
    Nayak R C, Satpathy L 2012 At. Data Nucl. Data Tables 98 616 doi: 10.1016/j.adt.2011.12.003
    [44]
    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 89 024311 doi: 10.1103/PhysRevC.89.024311
    [45]
    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 90 017302 doi: 10.1103/PhysRevC.90.017302
    [46]
    Sobiczewski A, Litvinov Y A, Palczewski M 2018 At. Data Nucl. Data Tables 119 1 doi: 10.1016/j.adt.2017.05.001
    [47]
    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B H 2014 Phys. Rev. C 90 014303 doi: 10.1103/PhysRevC.90.014303
    [48]
    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China, Ser. G 55 2414 doi: 10.1007/s11433-012-4943-y
    [49]
    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311 doi: 10.1103/PhysRevC.100.054311
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(208) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return