Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun. A multifunctional quantum teleportation network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
Citation: Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun. A multifunctional quantum teleportation network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749

A multifunctional quantum teleportation network

doi: 10.7498/aps.70.20201749
More Information
  • Corresponding author: Zhou Yao-Yao, E-mail: zhouyaoyaofangxia@163.com
  • Received Date: 21 Oct 2020
  • Rev Recd Date: 04 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Quantum teleportation is one of the most basic quantum protocols, which transfers an unknown quantum state from one location to another through local operation and classical communication by using shared quantum entanglement without physical transfer of the information carrier. And it has been widely used in various quantum information protocols such as entanglement swapping, quantum repeaters, quantum gate teleportation, quantum computation based on measurement, and quantum teleportation networks, which have important application value in quantum computation and quantum information. Quantum teleportation is a naturally bipartite process, in which an unknown quantum state can only be transmitted from one node to another. With the further development of quantum information research, it is necessary to transfer quantum states or quantum information among more and more nodes. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation. A bipartite quantum teleportation should be extended to a multipartite protocol known as a quantum teleportation network. In this paper, a multifunctional quantum teleportation network is proposed theoretically. We first propose a special method of constructing four-partite quantum resources in continuous variables (CVs), and based on this, construct two different types of CV quantum teleportation networks. One type of network contains just one quantum teleportation process consisting of a sender, a receiver and two controllers. In this type of network, the unknown quantum state can be recovered at any other node according to the requirement after the measurement in the input node, which enriches the transfer direction and transfer mode of the unknown quantum state. And meanwhile, the two controllers can control the transfer of a quantum state from the sender to the receiver by restricting the sender and receiver’s access to their information, which makes the quantum teleportation network controllable. The other type of network has two quantum teleportation processes, each containing only a sender, a receiver and no controllers, which increases the number of quantum states that can be transmitted. Then we analyze the dependence of the fidelity of each quantum teleportation network on different physical parameters, and compare the characteristics, advantages and disadvantages among different types of quantum teleportation networks. The scheme for constructing a multifunctional quantum teleportation network in this paper shows some advantages, such as the greater number of quantum nodes, diversity of types, simple operation procedure. And all these advantages provide a broader application prospect for establishing larger and more complex quantum information networks in the future and quicken the pace of the application of quantum information.

     

  • loading
  • [1]
    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895 doi: 10.1103/PhysRevLett.70.1895
    [2]
    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575 doi: 10.1038/37539
    [3]
    Boschi D, Branca S, Martini F D, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121 doi: 10.1103/PhysRevLett.80.1121
    [4]
    Nielsen M A, Knill E, Laflamme R 1998 Nature 396 52 doi: 10.1038/23891
    [5]
    Marcikic I, Riedmatten H D, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509 doi: 10.1038/nature01376
    [6]
    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706 doi: 10.1126/science.282.5389.706
    [7]
    Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302 doi: 10.1103/PhysRevA.67.032302
    [8]
    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802 doi: 10.1103/PhysRevA.67.033802
    [9]
    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503 doi: 10.1103/PhysRevLett.117.240503
    [10]
    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891 doi: 10.1103/PhysRevLett.80.3891
    [11]
    Makino K, Hashimoto Y, Yoshikawa J I, Ohdan H, Toyama T, Loock P V, Furusawa A 2016 Sci. Adv. 2 e1501772 doi: 10.1126/sciadv.1501772
    [12]
    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932 doi: 10.1103/PhysRevLett.81.5932
    [13]
    Xu J S, Yung M H, Xu X Y, Tang J S, Li C F, Guo G C 2016 Sci. Adv. 2 e1500672 doi: 10.1126/sciadv.1500672
    [14]
    Gottesman D, Chuang I L 1999 Nature 402 390 doi: 10.1038/46503
    [15]
    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188 doi: 10.1103/PhysRevLett.86.5188
    [16]
    Bouchard F, Fickler R, Boyd R W, Karimi E 2017 Sci. Adv. 3 e1601915 doi: 10.1126/sciadv.1601915
    [17]
    Vaidman L 1994 Phys. Rev. A 49 1473 doi: 10.1103/PhysRevA.49.1473
    [18]
    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70 doi: 10.1038/nature23675
    [19]
    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401 doi: 10.1126/sciadv.aas9401
    [20]
    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178 doi: 10.1364/OL.37.005178
    [21]
    Yukawa M, Ukai R, Loock P V, Furusawa A 2008 Phys. Rev. A 78 012301 doi: 10.1103/PhysRevA.78.012301
    [22]
    Loock P V, Braunstein S L 2000 Phys. Rev. Lett. 84 3482 doi: 10.1103/PhysRevLett.84.3482
    [23]
    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430 doi: 10.1038/nature02858
    [24]
    Karlsson A, Bourennane M 1998 Phys. Rev. A 58 4394 doi: 10.1103/PhysRevA.58.4394
    [25]
    Lee J, Kim M S 2000 Phys. Rev. Lett. 84 4236 doi: 10.1103/PhysRevLett.84.4236
    [26]
    Lee J, Min H, Oh S D 2002 Phys. Rev. A 66 052318 doi: 10.1103/PhysRevA.66.052318
    [27]
    Chen X B, Xu G, Yang Y X, Wen Q Y 2010 Opt. Commun. 283 4802 doi: 10.1016/j.optcom.2010.07.058
    [28]
    Zheng Y Z, Gu Y J, Guo G C 2002 Chin. Phys. B 11 537 doi: 10.1088/1009-1963/11/6/304
    [29]
    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306 doi: 10.1103/PhysRevA.75.052306
    [30]
    Li S S, Nie Y Y, Hong Z H, Yi X J, Huang Y B 2008 Commun. in Theoretical Phys. 50 633 doi: 10.1088/0253-6102/50/3/20
    [31]
    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photonics 9 641 doi: 10.1038/nphoton.2015.154
    [32]
    He G Q, Zhang J T, Zeng G H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 215503 doi: 10.1088/0953-4075/41/21/215503
    [33]
    Ren L J, He G Q, Zeng G H 2008 Phys. Rev. A 78 042302 doi: 10.1103/PhysRevA.78.042302
    [34]
    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321 doi: 10.1364/OE.15.004321
    [35]
    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602 doi: 10.1103/PhysRevLett.100.033602
    [36]
    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952 doi: 10.1364/OE.23.004952
    [37]
    Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267 doi: 10.1080/09500340008244041
    [38]
    Braunstein S L, Fuchs C A, Kimble H J, Loock P V 2001 Phys. Rev. A 64 022321 doi: 10.1103/PhysRevA.64.022321
    [39]
    Yu T, Eberly J H 2009 Science 323 598 doi: 10.1126/science.1167343
    [40]
    Almeida M P, Melo F D, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579 doi: 10.1126/science.1139892
    [41]
    Barbara M T 2015 Rev. Mod. Phys. 87 307 doi: 10.1103/RevModPhys.87.307
    [42]
    Duan L, Guo G 1999 Phys. Lett. A 255 209 doi: 10.1016/S0375-9601(99)00183-8
    [43]
    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801 doi: 10.1103/PhysRevLett.117.110801
  • 加载中

Catalog

    Figures(6)

    Article Metrics

    Article views(244) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return