Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
Citation: Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773

Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate

doi: 10.7498/aps.70.20201773
More Information
  • Corresponding author: Li Rui, E-mail: rli@dlut.edu.cn
  • Received Date: 24 Oct 2020
  • Rev Recd Date: 20 Nov 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Plasma nanostructures are of particular significance for serving as a substrate for spectroscopic detection and identification of individual molecules. By combining the excitation wavelength of the molecule with the resonance wavelength of the nanostructure, the sensitive single-molecule Raman detection can be achieved. A high and stable plasma substrate for coherent anti-Stokes Raman scattering(CARS) is very useful for developing the surface-enhanced coherent anti-Stokes Raman scattering (SECARS). In the plasma nanostructures, the strong coupling of plasmonic nanoparticles with an inter-particle gap smaller than the diameter of the individual nanoparticles results in the hybridization of the optical properties of these individual nanoparticles. There are also the charge transfer plasmons(CTP) appearing in conductive bridging nanoparticles. Their unique properties make linked nanosystems a suitable candidate for building artificial molecules, nanomotors, sensors, and other optoelectronic devices. In this work, we, starting from reality, theoretically design a new linked nanosystem SECARS substrate where Fano resonance can be generated by the plasmon hybridization (PH) model resonance and the charge transfer plasmon resonance. The introduction of charge transfer plasma improves the tunability of structural resonance. By adjusting the conductivity of the conductive junction, the wavelength of the charge transfer plasma resonance can be easily adjusted to change the wavelength position of the Fano resonance. The data obtained by numerical simulation of the Raman mode at 1557 cm–1 of L-tryptophan when a 1064 nm light source is used as the pump light show that this spatially symmetrical structure can generate multiple high-enhancement hot spots that do not depend on the polarization direction of the incident light. Ordinary CARS signal can generally be enhanced by 1012, and its maximum can reach 1014. Due to the ultrastrong field enhancement and insensitive-to-polarization, this method of using charge transfer plasma to design a substrate can be used in the practical substrate of SECARS and provide new ideas for designing other nonlinear optical processes such as four wave mixing and stimulated Raman scattering.

     

  • loading
  • [1]
    Minck R W, Terhune R W, Rado W G 1963 Appl. Phys. Lett. 3 181 doi: 10.1063/1.1753840
    [2]
    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387 doi: 10.1063/1.1655519
    [3]
    Duncan M D, Reintjes J, Manuccia T J 1982 Opt. Lett. 7 350 doi: 10.1364/OL.7.000350
    [4]
    Shi K, Li H, Xu Q, Psaltis D, Liu Z 2010 Phys. Rev. Lett. 104 093902 doi: 10.1103/PhysRevLett.104.093902
    [5]
    刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨 2016 物理学报 65 064204 doi: 10.7498/aps.65.064204

    Liu S L, Liu W, Chen D N, Qu J L, Niu H B, 2016 Acta Phys. Sin. 65 064204 doi: 10.7498/aps.65.064204
    [6]
    Steuwe C, Kaminski C F, Baumberg J J, Mahajan S 2011 Nano Lett. 11 5339 doi: 10.1021/nl202875w
    [7]
    Krafft C, Dietzek B, Schmitt M, Popp J 2012 J Biomed. Opt. 17 040801 doi: 10.1117/1.JBO.17.4.040801
    [8]
    Koo T W, Chan S, Berlin A A 2005 Opt. Lett. 30 1024 doi: 10.1364/OL.30.001024
    [9]
    Chew H, Wang D, Kerker M 1984 J. Opt. Soc. Am. B: Opt. Phys. 1 56 doi: 10.1364/JOSAB.1.000056
    [10]
    Addison C J, Konorov S O, Brolo A G, Blades M W, Turner R F B 2009 J. Phys.Chem. C 113 3586 doi: 10.1021/jp809579b
    [11]
    Dmitri V V, Alexander M S, Xia H, Kai W, Pankaj K J, Elango M, Steven E W, George W, Alexei V S, Marlan O S 2012 Sci. Rep. 2 891 doi: 10.1038/srep00891
    [12]
    Shutov A D, Yi Z, Wang J, Sinyukov A M, He Z, Tang C, Chen J, Ocola E J, Laane J, Sokolov A V, Voronine D V, Scully M O 2018 ACS Photonics 5 4960 doi: 10.1021/acsphotonics.8b01136
    [13]
    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444 doi: 10.1063/1.1647518
    [14]
    Halas N J, Lal S, Wei-Shun C, Link S, Nordlander P 2011 Chem. Rev. 111 3913 doi: 10.1021/cr200061k
    [15]
    Fontana J, Charipar N, Flom S R, Naciri J, Piqué A, Ratna B R 2016 ACS Photonics 3 904 doi: 10.1021/acsphotonics.6b00184
    [16]
    Fontana J, Ratna B R 2014 Appl. Phys. Lett. 105 011107 doi: 10.1063/1.4887335
    [17]
    Huang Y, Ma L, Hou M, Xie Z, Zhang Z 2016 Phys. Chem. Chem. Phys. 18 2319 doi: 10.1039/C5CP07185B
    [18]
    Liu L, Wang Y, Fang Z, Zhao K 2013 J. Chem. Phys. 139 064310 doi: 10.1063/1.4817592
    [19]
    Pérez-González O, Zabala N, Borisov A G, Halas N J, Nordlander P, Aizpurua J 2010 Nano Lett. 10 3090 doi: 10.1021/nl1017173
    [20]
    Zhang Y, Wen F, Zhen Y R, Nordlander P, Halas N J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 9215 doi: 10.1073/pnas.1220304110
    [21]
    Zhang Y, Zhen Y R, Neumann O, Day J K, Nordlander P, Halas N J 2014 Nat. Commun. 5 4424 doi: 10.1038/ncomms5424
    [22]
    He J N, Fan C Z, Ding P, Zhu S M, Liang E J 2016 Sci. Rep. 6 20777 doi: 10.1038/srep20777
    [23]
    Kim K H, Rim W S 2019 Appl. Phys. A 125 1 doi: 10.1007/s00339-019-2708-4
    [24]
    Arpan D, Erik M V 2020 JEOS:RP 16 1 doi: 10.1186/s41476-019-0123-2
    [25]
    Tian M, Zhao Y, Wan M, Ji P, Li Y, Song Y, Yuan S, Zhou F, He J, Ding P 2018 Phys. Lett. A. 382 3187 doi: 10.1016/j.physleta.2018.08.010
    [26]
    Maiti N, Thomas S, Jacob J A, Chadha R, Mukherjee T, Kapoor S 2012 J. Colloid Interface Sci. 380 141 doi: 10.1016/j.jcis.2012.04.071
    [27]
    李亚琴, 简国树, 吴世法 2006 中国光学快报(英文版) 4 671 https://www.osapublishing.org/col/abstract.cfm?uri=col-4-11-671

    li Y Q, Jian G S, Wu S F, 2006 Chin. Opt. Lett. 4 671 https://www.osapublishing.org/col/abstract.cfm?uri=col-4-11-671
    [28]
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721 doi: 10.1021/nl101938p
    [29]
    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042 doi: 10.1021/nn103172t
    [30]
    Encina E R, Coronado E A 2011 J. Phys. Chem. C 115 15908 doi: 10.1021/jp205158w
    [31]
    Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527 doi: 10.1021/nn401175j
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views(155) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return