Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao. Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
Citation: Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao. Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778

Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands

doi: 10.7498/aps.70.20201778
More Information
  • Corresponding author: Wang Dan, E-mail: wangdan63@sxu.edu.cn
  • Received Date: 26 Oct 2020
  • Rev Recd Date: 20 Nov 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Focusing on the frequency division multiplexing technology in the applications of large scale optical communication, the double-channel optical gain spectrum with two frequency bands is studied in this paper. The double-channel gain spectrum, named probe channel and four wave mixing channel, comes from a co-propagating degenerate four wave mixing in a hot atomic ensemble. The intention is to divide the gain spectrum into several sub frequency bands through dressed four wave mixing. When a dressed field is exerted on one transition that shares the common excited state with the degenerate four wave mixing, the excited state can experience dressed splitting. It opens two transition paths for the degenerate four wave mixing simultaneously. Because of quantum interference between the two paths, the degenerate four wave mixing are suppressed at two-photon resonance. Consequently, Autler-Townes splitting appears in the gain spectrum, i.e. spectrum is changed from single frequency band into two “M”-type bands. In this paper, the nonlinear density matrix element describing the degenerate (dressed) four wave mixing is solved through perturbation theory, and then the gain spectrum in Doppler broadening atomic medium is plotted, and its Autler-Townes splitting is analyzed by using the dressed-state theory. It shows that the Autler-Townes splitting depends on both the Rabi frequency and single photon detuning of the dressed field. Relevant experiment is performed in cesium vapor at 60 ℃, a pair of high-gain optical spectra with two frequency bands for both double channels is successfully obtained. Moreover, the Autler-Townes splitting as a function of the dressed field intensity and single photon detuning are studied quantitatively. The experimental results accord well with the theoretical predictions. Compared with the degenerate four wave mixing, the atom-field coupled system is changed from an original open two-level into a closed Λ three-level due to the external dressed field, which greatly improves the atomic population on the coherent ground state via optical pumping, and therefore enhancing the gain significantly. This work is important for the field of atom-based optical communication. It provides an optional way of conveying multi-frequency information to the two parallel channels as well as improving the gain of four wave mixing.

     

  • loading
  • [1]
    Lukin M D, Matsko A B, Fleischhauer M, Scully M O 1999 Phys. Rev. Lett. 82 1847 doi: 10.1103/PhysRevLett.82.1847
    [2]
    Balic V, Braje D A, Kolchin P, Yin G Y, Harris S E 2005 Phys. Rev. Lett. 94 183601 doi: 10.1103/PhysRevLett.94.183601
    [3]
    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178 doi: 10.1364/OL.32.000178
    [4]
    Motomura K, Tsukamoto M, Wakiyama A, Harada K, Mitsunaga M 2005 Phys. Rev. A 71 043817 doi: 10.1103/PhysRevA.71.043817
    [5]
    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 83 033813 doi: 10.1103/PhysRevA.89.033813
    [6]
    Ma R, Liu W, Qin Z Z, Jia X J, Gao J R 2017 Phys. Rev. A 96 043843 doi: 10.1103/PhysRevA.96.043843
    [7]
    Swaim J D, Glasser R T 2017 Phys. Rev. A 96 033818 doi: 10.1103/PhysRevA.96.033818
    [8]
    Wang D, Hu L Y, Pang X M, Zhang J X, Zhu S Y 2013 Phys. Rev. A 88 042314 doi: 10.1103/PhysRevA.88.042314
    [9]
    Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P, Jing J T 2014 Phys. Rev. Lett. 113 023602 doi: 10.1103/PhysRevLett.113.023602
    [10]
    Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601 doi: 10.1103/PhysRevLett.100.143601
    [11]
    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506 doi: 10.1103/PhysRevLett.123.070506
    [12]
    Boyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys. Rev. Lett. 99 143601 doi: 10.1103/PhysRevLett.99.143601
    [13]
    Jing J T, Zhou Z F, Liu C J, Qin Z Z, Fang Y M, Zhou J, Zhang W P 2014 Appl. Phys. Lett. 104 151103 doi: 10.1063/1.4871384
    [14]
    Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501 doi: 10.1103/PhysRevLett.103.010501
    [15]
    Kong J, Hudelist F, Ou Z Y, Zhang W P 2013 Phys. Rev. Lett. 111 033608 doi: 10.1103/PhysRevLett.111.033608
    [16]
    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049 doi: 10.1038/ncomms4049
    [17]
    Liu W, Ma R, Zeng L, Qin Z Z, Su X L 2019 Opt. Lett. 44 2053 doi: 10.1364/OL.44.002053
    [18]
    Zhou H T, Li R F, Dai Y P, Wang D, Wu J Z, Zhang J X 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185002 doi: 10.1088/1361-6455/ab36b0
    [19]
    Zhang Y P, Xiao M 2007 Opt. Express 15 7182 doi: 10.1364/OE.15.007182
    [20]
    Zuo Z C, Sun J, Liu X, Wu L A, Fu P M 2007 Phys. Rev. A 75 023805 doi: 10.1103/PhysRevA.75.023805
    [21]
    Zhang Y P, Anderson B, Xiao M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 045502 doi: 10.1088/0953-4075/41/4/045502
    [22]
    Li C B, Zheng H B, Zhang Y P, Nie Z Q, Song J P, Xiao M 2009 Appl. Phys. Lett. 95 041103 doi: 10.1063/1.3189813
    [23]
    李祥, 李培英 2015 激光与光电子学进展 52 051901 doi: 10.3788/LOP52.051901

    Li X, Li P Y 2015 Las. Optoelect. Prog. 52 051901 doi: 10.3788/LOP52.051901
    [24]
    桑苏玲 2019 激光与光电子学进展 56 081901 doi: 10.3788/LOP56.081901

    Sang S L 2019 Las. Optoelect. Prog. 56 081901 doi: 10.3788/LOP56.081901
    [25]
    Su J J, Yu I A 2003 Chin. J. Phys. 41 627
    [26]
    Novikova I, Matsko A B, Welch G R 2002 J. Mod. Opt. 49 2565 doi: 10.1080/0950034021000011293
    [27]
    Grischkowsky D 1970 Phys. Rev. Lett. 24 866 doi: 10.1103/PhysRevLett.24.866
  • 加载中

Catalog

    Figures(6)

    Article Metrics

    Article views(218) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return