Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
Citation: Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802

Structure and thermal properties of periodic split-flow microchannels

doi: 10.7498/aps.70.20201802
More Information
  • Corresponding author: Wang Ru-Zhi, E-mail: wrz@bjut.edu.cn
  • Received Date: 30 Oct 2020
  • Rev Recd Date: 24 Nov 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Microchannel heat sinks have important applications in integrated circuits, but the current traditional long straight microchannel heat dissipation process causes uneven temperature and low heat dissipation efficiency. In this paper, a periodic split-flow microstructure is designed and integrated with traditional microchannels to form a periodic split-flow microchannel heat sink. Numerical simulation is used to study the influence of the number, the arrangement and structural parameters of microstructures in a single microchannel on its thermal performance. The simulation results show that the split-flow microstructure can increase the heat exchange area, break the original laminar boundary layer, promote the mixing of cold/hot coolant, and significantly improve the heat dissipation performance of the microchannel. Through comparative experiments, 9 groups are finally determined as the optimal number of microstructures in a single microchannel. At a heat flux of 100 W/cm2, when the coolant flow rate at the inlet is 1.18 m/s, after 9 groups of microstructures are added into a single microchannel, the maximum temperature drops by about 24 K and the thermal resistance decreases by about 44%. The Nusselt number is increased by about 124%, and the performance evaluation criterion (PEC) reaches 1.465. On this basis, the microstructure adopts a staggered gradual periodic arrangement to avoid the long-distance non-microstructure section between the two groups of microstructures. The turbulence element that gradually widens along the flow direction makes the coolant fully utilized. This results in a reduction in the high/low temperature zone and alleviates the temperature gradient that exists along the flow direction of the heat dissipation surface, and the pressure drop loss is also reduced to a certain extent compared with the pressure drop in the uniform arrangement, and the comprehensive thermal performance is further improved. It shows broad application prospects in the field of high-power integrated circuits and electronic cooling.

     

  • loading
  • [1]
    刘益才 2006 电子器件 29 296 doi: 10.3969/j.issn.1005-9490.2006.01.082

    Liu Y C 2006 Chin. J. Electron. 29 296 doi: 10.3969/j.issn.1005-9490.2006.01.082
    [2]
    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37 doi: 10.1038/s41566-019-0547-7
    [3]
    Murshed S M S, Castro C A N D 2017 Renewable Sustainable Energy Rev. 78 821 doi: 10.1016/j.rser.2017.04.112
    [4]
    Zhang Z W, Ouyang Y, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1 doi: 10.1016/j.physrep.2020.03.001
    [5]
    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704 doi: 10.1002/adfm.201904704
    [6]
    Ma Y L, Zhang Z W, Chen J G, Kimmo S, Sebastian V, Chen J 2018 Carbon 135 263 doi: 10.1016/j.carbon.2018.04.030
    [7]
    Dmitry A, Chen J, Walther J H, Giapis K P, Panagiotis A, Petros K 2015 Nano Lett. 15 5744 doi: 10.1021/acs.nanolett.5b03024
    [8]
    刘一兵 2007 电子工艺技术 28 286 doi: 10.3969/j.issn.1001-3474.2007.05.011

    Liu Y B 2007 Electron. Process Technol. 28 286 doi: 10.3969/j.issn.1001-3474.2007.05.011
    [9]
    Tuckerman D B, Pease R F W 1981 IEEE Electron Device Lett. 2 126 doi: 10.1109/EDL.1981.25367
    [10]
    裘腾威, 刘敏, 刘源, 张祎, 金涨军 2020 低温与超导 48 85

    Qiu T W, Liu M, Liu Y, Zhang W, Jin Z J J 2020 Cryog. Supercond. 48 85
    [11]
    裘腾威, 刘敏, 刘源, 张祎, 张威 2020 热科学与技术 19 339

    Qiu T W, Liu M, Liu Y, Zhang W, Zhang W 2020 J. Therm. Sci. Tech. 19 339
    [12]
    Qi Z, Zheng Y, Zhu X, Wei J, Liu J, Chen L, Li C 2020 Vacuum 177 109377 doi: 10.1016/j.vacuum.2020.109377
    [13]
    Khan M Z U, Uddin E, Akbar B, Akram N, Naqvi A A, Sajid M, Ali Z, Younis M Y, Garcia Marquez F P 2020 Nanomaterials 10 1796 doi: 10.3390/nano10091796
    [14]
    Bahiraei M, Monavari A, Naseri M, Moayedi H 2020 Int. J. Heat Mass Transfer 151 119359 doi: 10.1016/j.ijheatmasstransfer.2020.119359
    [15]
    Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, Lorenzini-Gutierrez D, Gonzalez-Valle C U 2016 Appl. Therm. Eng. 95 374 doi: 10.1016/j.applthermaleng.2015.11.037
    [16]
    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701 doi: 10.7498/aps.68.20181877

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta. Phys. Sin. 68 054701 doi: 10.7498/aps.68.20181877
    [17]
    Ghaedamini H, Salimpour M R, Mujumdar A S 2011 Appl. Therm. Eng. 31 708 doi: 10.1016/j.applthermaleng.2010.10.005
    [18]
    董涛, 陈运生, 杨朝初, 毕勤成, 吴会龙, 郑国平 2005 化工学报 56 1618 doi: 10.3321/j.issn:0438-1157.2005.09.004

    Dong T, Chen Y S, Yang C C, Bi Q C, Wu H L, Zheng G P 2005 J. Chem. Eng. Data. 56 1618 doi: 10.3321/j.issn:0438-1157.2005.09.004
    [19]
    Abo-Zahhad E M, Ookawara S, Radwan A, Elkady M F, El-Shazly A H 2020 Case Stud. Therm. Eng. 18 100587 doi: 10.1016/j.csite.2020.100587
    [20]
    Wang W, Li Y, Zhang Y, Li B, Sundén B 2019 J. Therm. Anal. Calorim. 140 1259 doi: 10.1007/s10973-019-09156-x
    [21]
    Bhandari P, Prajapati Y K 2021 Int. J. Therm. Sci. 159 106609 doi: 10.1016/j.ijthermalsci.2020.106609
    [22]
    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 247
    [23]
    Xia G D, Chai L, Wang H Y, Zhou M Z, Cui Z Z 2010 Appl. Therm. Eng. 31 1208 doi: 10.1016/j.applthermaleng.2010.12.022
    [24]
    Wang R J, Wang J W, Lijin B Q, Zhu Z F 2018 Appl. Therm. Eng. 133 428 doi: 10.1016/j.applthermaleng.2018.01.021
    [25]
    Jia Y T, Xia G D, Li Y F, Ma D D, Cai B 2018 Int. Commun. Heat Mass Transfer 92 78 doi: 10.1016/j.icheatmasstransfer.2017.11.004
    [26]
    Xie H, Yang B, Zhang S, Song M 2020 Int. J. Energy. Res. 44 3049 doi: 10.1002/er.5135
    [27]
    Shen H, Wang C C, Xie G 2018 Int. J. Heat Mass Transfer 117 487 doi: 10.1016/j.ijheatmasstransfer.2017.10.025
    [28]
    Xie G, Shen H, Wang C C 2015 Int. J. Heat Mass Transfer 90 948 doi: 10.1016/j.ijheatmasstransfer.2015.07.034
    [29]
    Li Y, Wang Z, Yang J, Liu H 2020 Appl. Therm. Eng. 175 115348 doi: 10.1016/j.applthermaleng.2020.115348
    [30]
    Li P, Guo D, Huang X 2020 Appl. Therm. Eng. 171 115060 doi: 10.1016/j.applthermaleng.2020.115060
    [31]
    Mehta S K, Pati S 2019 J. Therm. Anal. Calorim. 136 49 doi: 10.1007/s10973-018-7969-1
    [32]
    Zhang C P, Lian Y F, Yu X F, Liu W, Teng J T, Xu T T, Hsu C H, Chang Y J, Greif R 2013 Int. J. Heat Mass Transfer 66 930 doi: 10.1016/j.ijheatmasstransfer.2013.06.073
    [33]
    Lee P S, Garimella S V 2006 Int. J. Heat Mass Transfer 49 3060 doi: 10.1016/j.ijheatmasstransfer.2006.02.011
    [34]
    Wang W, Zhang Y, Lee K S, Li B 2019 Int. J. Heat Mass Transfer 135 706 doi: 10.1016/j.ijheatmasstransfer.2019.01.115
  • 加载中

Catalog

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(364) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return