Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Yang Zhen, Zhu Can, Ke Ya-Jiao, He Xiong, Luo Feng, Wang Jian, Wang Jia-Fu, Sun Zhi-Gang. Peltier effect: From linear to nonlinear[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
Citation: Yang Zhen, Zhu Can, Ke Ya-Jiao, He Xiong, Luo Feng, Wang Jian, Wang Jia-Fu, Sun Zhi-Gang. Peltier effect: From linear to nonlinear[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826

Peltier effect: From linear to nonlinear

doi: 10.7498/aps.70.20201826
More Information
  • Corresponding author: Sun Zhi-Gang, E-mail: sun_zg@whut.edu.cn
  • Received Date: 02 Nov 2020
  • Rev Recd Date: 10 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Thermoelectric refrigeration technology is an environment-friendly refrigeration technology with broad application prospects. The Peltier effect plays a central role in the thermoelectric refrigeration process, however, the Peltier coefficient is difficult to measure. So in the actual application process, first, the Seebeck coefficient is usually obtained, and then the Peltier coefficient is achieved by the Kelvin's second relation indirectly. It should be noted that the Kelvin's second relation is obtained under linear conditions (Ohm's law, Fourier's law, etc.), while in practice, nonlinear current-voltage relationships (Schottky junction, pn junction, etc.) and nonlinear heat transport relations are common. And quantum effect plays a leading role in the nano-scaled region, then the Peltier effect must consider the influence of nonlinearity, and the applicability of the Kelvin's second relation must also be reconsidered. This paper first summarizes the theoretical derivation of Peltier coefficient and the Kelvin’s second relation by different methods, then discusses the hypothetical conditions used in the derivation process, and points out that the Kelvin’s second relation can be established only under the hypothetical linear conditions. Then, several experimental methods of determining the Peltier coefficient are summarized. It is found that there are still many problems encountered in the measurement of Peltier coefficient, and the Kelvin’s second relation has not been proved accurately by practical experiments. Various side effects (Fourier effect, Thomson effect, Joule effect and Seebeck effect) in the measurement process affect the temperature distribution of the system directly or indirectly, making it difficult to measure Peltier heat. After that, the theoretical work of nonlinear Peltier effect is briefly introduced. In the process of thermal transport and electrical transport on a microscopic scale, quantum effect plays a leading role, and the nonlinear part of the Peltier coefficient gradually emerges. These studies show the cognition of researchers that the Peltier effect gradually changes from linear to nonlinear. The nonlinear Peltier effect not only exists objectively, but also is very important in the practical applications. However, the current research on the nonlinear Peltier effect is still at the theoretical level, and there is almost no experimental work. Finally, we discuss the research strategy and feasible research direction of Peltier effect under nonlinear conditions. An integrated study of the relationship among various heterojunction band structures, interface properties and interface effects is helpful in comprehensively understanding the Peltier effect. With the continuous improvement of experimental conditions and theoretical research, the study of nonlinear Peltier effect is expected to realize a new breakthrough.

     

  • loading
  • [1]
    Peltier J C A 1834 Annales de Chimie et de Physique 56 371
    [2]
    Disalvo F J 1999 Science 285 703 doi: 10.1126/science.285.5428.703
    [3]
    Bell L E 2008 Science 321 1457 doi: 10.1126/science.1158899
    [4]
    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X 2015 Appl. Energ. 143 1 doi: 10.1016/j.apenergy.2014.12.075
    [5]
    Twaha S, Zhu J, Yan Y, Li B 2016 Renew. Sust. Energ. Rev. 65 698 doi: 10.1016/j.rser.2016.07.034
    [6]
    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256 doi: 10.1002/admt.201700256
    [7]
    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R 2009 Nat. nanotechnol. 4 235 doi: 10.1038/nnano.2008.417
    [8]
    Ibañez-Puy M, Bermejo-Busto J, Martín-Gómez C, Vidaurre-Arbizu M, Sacristán-Fernández J A 2017 Appl. Energ. 200 303 doi: 10.1016/j.apenergy.2017.05.020
    [9]
    Hou W, Nie X, Zhao W, Zhou H, Mu X, Zhu W, Zhang Q 2018 Nano Energy 50 766 doi: 10.1016/j.nanoen.2018.06.020
    [10]
    Caswell A E 1911 Phys. Rev. (Series I) 33 379 doi: 10.1103/PhysRevSeriesI.33.379
    [11]
    Rötzer G, Lockwood L, Gil Z J L 1977 J. Appl. Phys. 48 750 doi: 10.1063/1.323665
    [12]
    Fukushima A, Kubota H, Yamamoto A, Suzuki Y, Yuasa S 2006 J. Appl. Phys. 99 08H706 doi: 10.1063/1.2172211
    [13]
    Garrido J 2009 J. Phys. Condens. Matter 21 155802 doi: 10.1088/0953-8984/21/15/155802
    [14]
    Garrido J, Casanovas A 2012 J. Electron. Mater. 41 1990 doi: 10.1007/s11664-012-1966-0
    [15]
    Avery A D, Zink B L 2013 Phys. Rev. Lett. 111 126602 doi: 10.1103/PhysRevLett.111.126602
    [16]
    Garrido J, Casanovas A 2014 J. Appl. Phys. 115 123517 doi: 10.1063/1.4869776
    [17]
    Thomson W 1857 P. Roy. Soc. Edinb. 91 doi: 10.1017/s0370164600027310
    [18]
    Callen H B 1948 Phys. Rev. 73 1349 doi: 10.1103/PhysRev.73.1349
    [19]
    Ioffe A F 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited) pp18−21
    [20]
    Heikes R R, Ure R W 1961 Thermoelectricity: Science and Engineering (New York-London: Inderscience Publishers) pp40−42
    [21]
    Zebarjadi M, Esfarjani K, Shakouri A 2007 Appl. Phys. Lett. 91 122104 doi: 10.1063/1.2785154
    [22]
    Whitney R S 2013 Phys. Rev. B 88 064302 doi: 10.1103/PhysRevB.88.064302
    [23]
    López R, Sánchez D 2013 Phys. Rev. B 88 045129 doi: 10.1103/PhysRevB.88.045129
    [24]
    Bogachek E N, Scherbakov A G, Landman U 1998 Solid State Commun. 108 851 doi: 10.1016/S0038-1098(99)80000-3
    [25]
    Drebushchak V A 2007 J. Therm. Anal. Calorim. 90 289 doi: 10.1007/s10973-006-7925-3
    [26]
    Drebushchak V A 2008 J. Therm. Anal. Calorim. 91 311 doi: 10.1007/s10973-007-8336-9
    [27]
    Onsager L 1931 Phys. Rev. 37 405 doi: 10.1103/PhysRev.37.405
    [28]
    Wang C, Chen S 2009 J. Electron. Mater. 38 655 doi: 10.1007/s11664-009-0720-8
    [29]
    Straube H, Wagner J M, Breitenstein O 2009 Appl. Phys. Lett. 95 052107 doi: 10.1063/1.3194156
    [30]
    Jin W, Liu L, Yang T, Shen H, Zhu J, Xu W, Li S, Li Q, Chi L, Di C A, Zhu D 2018 Nat. Commun. 9 3586 doi: 10.1038/s41467-018-05999-4
    [31]
    Titov O Y, Velazquez-Perez J E, Gurevich Y G 2015 Int. J. Therm. Sci. 92 44 doi: 10.1016/j.ijthermalsci.2015.01.023
    [32]
    Apertet Y, Goupil C 2016 Int. J. Therm. Sci. 104 225 doi: 10.1016/j.ijthermalsci.2016.01.009
    [33]
    Sánchez D, López R 2016 C. R. Phys. 17 1060 doi: 10.1016/j.crhy.2016.08.005
    [34]
    Kulik I O 1994 J. Phys. Condens. Matter 6 9737 doi: 10.1088/0953-8984/6/45/022
    [35]
    Bogachek E N, Scherbakov A G, Landman U 1999 Phys. Rev. B 60 11678 doi: 10.1103/PhysRevB.60.11678
    [36]
    Çipiloğlu M A, Turgut S, Tomak M 2004 Phys. Status Solidi B 241 2575 doi: 10.1002/pssb.200402058
    [37]
    Zebarjadi M, Esfarjani K, Shakouri 2008 8th Symposium on Thermoelectric Power Generation Held 2007 MRS Fall Meeting Boston, November 26−29, 2007 p427
    [38]
    Sadeghian R B, Bahk J-H, Bian Z, Shakouri A 2012 J. Electron. Mater. 41 1370 doi: 10.1007/s11664-011-1858-8
  • 加载中

Catalog

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(451) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return