Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Zhao Xiang-Yu, Qin Yu-Lu, Ji Bo-Yu, Lang Peng, Song Xiao-Wei, Lin Jing-Quan. Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
Citation: Zhao Xiang-Yu, Qin Yu-Lu, Ji Bo-Yu, Lang Peng, Song Xiao-Wei, Lin Jing-Quan. Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827

Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency

doi: 10.7498/aps.70.20201827
More Information
  • Corresponding author: Qin Yu-Lu, 2296161375@qq.com; Song Xiao-Wei, songxiaowei@cust.edu.cn
  • Received Date: 02 Nov 2020
  • Rev Recd Date: 22 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Near-field imaging and active control of excitation efficiency of femtosecond propagating surface plasmon (fs-PSP) are the prerequisites for its application. Here, we perform near-field imaging of fs-PSP excited at the trench etched on silver nano-film by using photoemission electron microscopy (PEEM). As an excellent near-field microscopy technique of in situ imaging with a high spatial resolution (< 20 nm), it needs neither molecular reporters nor scanning probes as required in nonlinear fluorescence microscopy in nonlinear fluorescence microscopy or scanning near-field optical microscopy, both of which may potentially bias PSP derived from such measurements. The period of the interference patterns induced by the incident femtosecond laser and the laser-induced fs-PSP and the wavelength of fs-PSP in a range of 720–900 nm of the incident laser wavelength are systematically measured. The fringe period of the interference pattern between fs-PSP and the incident laser is a range of 5.9–7.7 µm, and the wavelength of fs-PSP is in a range of 700–879 nm. The experimental results are consistent with the theoretical simulation results. Furthermore, we demonstrate that the excitation efficiency of fs-PSP can be actively controlled by adjusting the polarization direction of the incident laser in the femtosecond pump-probe experiments. Specifically, it is found that when the incident laser is polarized to 0° (p-polarization light), the excitation efficiency of PSP reaches a maximum value, and when the incident light is polarized to 90° (s-polarization light), the excitation efficiency of fs-PSP is the lowest. Unlike the simulation result by the finite difference time domain (FDTD) method, a plateau area of the intensity of the photoemission signal with the polarization direction of the incident laser appears in the femtosecond pump-probe experiment. This phenomenon is attributed to the background noise of the detection laser that masks the change of the fs-PSP excitation efficiency. In a word, this research realizes the experimental measurement of the basic parameters of fs-PSP and the manipulation of fs-PSP excitation efficiency by adjusting the polarization angle of the incident laser. This research lays a foundation for realizing the engineering manipulation of fs-PSP excitation efficiency and optimizing the performance of plasmonic devices.

     

  • loading
  • [1]
    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83 doi: 10.1038/nphoton.2009.282
    [2]
    Ozbay E 2006 Science 311 189 doi: 10.1126/science.1114849
    [3]
    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Xu H X, Wang W H 2018 Chem. Rev. 118 2882 doi: 10.1021/acs.chemrev.7b00441
    [4]
    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P 2015 Nano Lett. 15 3472 doi: 10.1021/acs.nanolett.5b00803
    [5]
    Pyayt A L, Wiley B, Xia Y, Chen A, Dalton L 2008 Nat. Nanotechnol. 3 660 doi: 10.1038/nnano.2008.281
    [6]
    Li X, Huang L, Tan Q, Bai B, Jin G 2011 Opt. Express 19 6541 doi: 10.1364/OE.19.006541
    [7]
    Sumimura A, Ota M, Nakayama K, Ito M, Ishii Y, Fukuda M 2016 IEEE Photonics Technol. Lett. 28 2419 doi: 10.1109/LPT.2016.2597878
    [8]
    Chang K W, Huang C C 2016 Sci. Rep. 6 19609 doi: 10.1038/srep19609
    [9]
    Hu T, Qiu H, Zhang Z, Guo X, Liu C, Rouifed M S, Littlejohns C G, Reed G T, Wang H 2016 IEEE Photonics J. 8 4802209 doi: 10.1109/JPHOT.2016.2585113
    [10]
    Lemke C, Schneider C, Leißner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M 2013 Nano Lett. 13 1053 doi: 10.1021/nl3042849
    [11]
    Bettina F, Philip K, Daniel P, Grisha S, Meir O, Fu L W, Thomas W, Michael H H, Timothy J D, Frank-J M Z H, Harald G 2017 Sci. Adv. 3 e1700721 doi: 10.1126/sciadv.1700721
    [12]
    Zu S, Han T Y, Jiang M L, Liu Z X, Jiang Q, Lin F, Zhu X, Fang Z Y 2019 Nano Lett. 19 775 doi: 10.1021/acs.nanolett.8b03850
    [13]
    Zu S, Han T Y, Jiang M L, Lin F, Zhu X, Fang Z Y 2018 ACS Nano 12 3908 doi: 10.1021/acsnano.8b01380
    [14]
    Han T Y, Zu S, Li Z W, Jiang M L, Zhu X, Fang Z Y 2018 Nano Lett. 18 567 doi: 10.1021/acs.nanolett.7b04705
    [15]
    Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B, Zhu X, Fang Z Y 2018 Opto-Electron. 1 180007 doi: 10.29026/oea.2018.180007
    [16]
    EL-Khoury P Z, Abellan P, Gong Y, Hage F S, Cottom J, Joly A G, Brydson R, Ramasse Q M, Hess W P 2016 The Anakyst 141 3562 doi: 10.1039/c6an00308g
    [17]
    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Pelton M, Scherer N F 2012 ACS Nano 6 472 doi: 10.1021/nn203802e
    [18]
    Liu X J, Wang Y, Potma E O 2012 Appl. Phys. Lett. 101 081116 doi: 10.1063/1.4747798
    [19]
    Zhang W H, Fang Z Y, Zhu X 2017 Chem. Rev. 117 5095 doi: 10.1021/acs.chemrev.6b00337
    [20]
    Yin L L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano Lett. 5 1399 doi: 10.1021/nl050723m
    [21]
    Fang Z Y, Zhu X 2013 Adv. Mater. 25 3840 doi: 10.1002/adma.201301203
    [22]
    Kubo A, Pontius N, Petek H 2007 Nano Lett. 7 470 doi: 10.1021/nl0627846
    [23]
    Sun Q, Zu S, Misawa H 2020 J. Chem. Phys. 153 120902 doi: 10.1063/5.0013659
    [24]
    Dąbrowski M, Dai Y N, Petek H 2017 J. Phys. Chem. Lett. 8 4446 doi: 10.1021/acs.jpclett.7b00904
    [25]
    Ditlbacher H, Krenn J R, Hohenau A, Leitner A, Aussenegg F R 2003 Appl. Phys. Lett. 83 3665 doi: 10.1063/1.1625107
    [26]
    Radko I P, Bozhevolnyi S I, Brucoli G, Martı′n-Moreno L, Garcıá-Vidal F G, Boltaseva A 2008 Phys. Rev. B 78 115115 doi: 10.1103/PhysRevB.78.115115
    [27]
    Baudrion A L, León-Pérez F, Mahboub O, Hohenau A, Ditlbacher H, Garcıá-Vidal F J, Dintinger J, Ebbesen T W, Martı′n-Moreno L, R.Krenn J 2008 Opt. Express 16 3420 doi: 10.1364/OE.16.003420
    [28]
    Lu J, Petre C, Yablonovitch E, Conway J 2007 J. Opt. Soc. Am. B 24 2268 doi: 10.1364/JOSAB.24.002268
    [29]
    Klick A, Cruz S L, Lemke C, Großmann M, Beyer H, Fiutowski J, Rubahn H G, Mendez E R, Bauer M 2016 Appl. Phys. B 122 79 doi: 10.1007/s00340-016-6350-y
    [30]
    Zhang L X, Kubo A, Wang L, Petek H, Seideman T 2011 Phys. Rev. B 84 245442 doi: 10.1103/PhysRevB.84.245442
    [31]
    Buckanie N M, Kirschbaum P, Sindermann S, Meyer zu J, Heringdorf F 2013 Ultramicroscopy 130 49 doi: 10.1016/j.ultramic.2013.03.007
    [32]
    Gong Y, Joly A G, EI-Khoury P Z, Hess W P 2017 J. Phys. Chem. Lett. 8 49 doi: 10.1021/acs.jpclett.6b02509
    [33]
    Qin Y L, Song X W, Ji B Y, Xu Y, Lin J Q 2019 Opt. Lett. 44 2935 doi: 10.1364/OL.44.002935
  • 加载中

Catalog

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(141) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return