Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Li Da-Wei, Wang Tao, Yin Xiao-Lei, Li Jia-Mei, Wang Li, Zhang Teng, Zhang Tian-Xiong, Cui Yong, Lu Xing-Qiang, Wang Li, Zhang Jie, Xu Guang. Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830
Citation: Li Da-Wei, Wang Tao, Yin Xiao-Lei, Li Jia-Mei, Wang Li, Zhang Teng, Zhang Tian-Xiong, Cui Yong, Lu Xing-Qiang, Wang Li, Zhang Jie, Xu Guang. Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830

Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system

doi: 10.7498/aps.70.20201830
More Information
  • Corresponding author: Wang Tao, E-mail: Taowang@siom.ac.cn; Lu Xing-Qiang, E-mail: xingqianglu@siom.ac.cn
  • Received Date: 03 Nov 2020
  • Rev Recd Date: 22 Feb 2021
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • In order to accurately analyze the broadband pulsed amplification performances of the domestic picosecond petawatt laser system, which uses large aperture N31 or N41 neodymium glass as gain medium, the broadband pulsed amplification model is improved by introducing the actual stimulated emission cross section (SECS) of neodymium glass. Comparing with the SECS under Gaussian approximation, the amplified pulsed spectrum gain narrowing effect with different SECSs are analyzed. It is found that in the actual SECS of N31 neodymium glass laser, the gain-narrowing effect is enhanced, the output energy decreases, gain’s saturation effect weakens, system’s accumulated B integral augments, but the laser system turns insensitive to the center wavelength simultaneously. Based on the Shenguang II high energy picosecond petawatt laser system which uses N31 neodymium glass, the spectral shape, center wavelength, and energy stability of amplified output pulse are simulated by using different SECSs. It is shown that the super-Gaussian spectral shape narrows more greatly than Gaussian spectral shape, the spectrum bandwidth narrows from 10 to about 3 nm with gain larger than 107, and the accumulated B integral increases to 1.7. Additionally, the gain-narrowing effect makes the output spectrum (with 1054 nm of center wavelength) less affected by changing the inputted center wavelength from 1052 to 1056 nm, and the gain saturation effect can improve output energy stability to less than 2% (root mean square (RMS)) with about 3% (RMS) inputted energy stability, which are beneficial to the subsequent pulse compression and physical experiment. Based on the above analysis, a broadband pulsed amplified experiment is conducted by using Shenguang II petawatt laser system, the injected seed is about 10 nm (full width at half maximum (FWHM)) with 5 order super Gaussian shape at 1054-nm center wavelength, and 1.2 mJ with 3% (RMS) energy stability from optical parametric chirped pulse amplification. The amplified pulse with 1900 J at 1054.2 nm (3 nm FWHM) and stability < 2% (shot to shot) is achieved, and the spectral shapes and bandwidths after bar and disk amplifiers are measured, which are consistent with theoretical analysis results. The results can provide a necessary reference for constructing high energy broadband laser system and improving its performances in the future.

     

  • loading
  • [1]
    Strickland D, Mourou G 1985 Opt. Commun. 56 219 doi: 10.1016/0030-4018(85)90120-8
    [2]
    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437 doi: 10.1016/0030-4018(92)90070-8
    [3]
    Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207 doi: 10.1063/1.1148795
    [4]
    Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9 doi: 10.3367/UFNe.0181.201101c.0009
    [5]
    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54 doi: 10.1017/hpl.2019.36
    [6]
    Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211 doi: 10.1134/S1019331611030166
    [7]
    Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003 doi: 10.1103/PhysRevLett.105.105003
    [8]
    Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6 doi: 10.1017/hpl.2014.8
    [9]
    Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933
    [10]
    Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87
    [11]
    Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281 doi: 10.1109/JQE.2003.823043
    [12]
    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172
    [13]
    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55 doi: 10.1017/hpl.2018.46
    [14]
    Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198 doi: 10.1117/12.239712
    [15]
    李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 物理学报 57 4898 doi: 10.7498/aps.57.4898

    Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898 doi: 10.7498/aps.57.4898
    [16]
    赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 3977 doi: 10.7498/aps.58.3977

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977 doi: 10.7498/aps.58.3977
    [17]
    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767 doi: 10.3321/j.issn:0253-2239.2008.09.025

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767 doi: 10.3321/j.issn:0253-2239.2008.09.025
    [18]
    Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270 doi: 10.1109/3.199268
    [19]
    Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348 doi: 10.1364/AO.36.009348
    [20]
    卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059 doi: 10.3321/j.issn:0253-2239.2001.09.009

    Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059 doi: 10.3321/j.issn:0253-2239.2001.09.009
    [21]
    管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005 doi: 10.3788/CJL202047.0901005

    Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005 doi: 10.3788/CJL202047.0901005
    [22]
    杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)
    [23]
    Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258 doi: 10.1364/AO.52.004258
    [24]
    刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718 doi: 10.3788/HPLPB20122407.1718

    Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718 doi: 10.3788/HPLPB20122407.1718
    [25]
    Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248 http://www.photon.ac.cn/EN/Y2008/V37/ISup1/248
    [26]
    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1 doi: 10.1017/hpl.2016.46
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(277) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return