Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Lü Jie, Fang He-Nan, Lü Tao-Tao, Sun Xing-Yu. Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
Citation: Lü Jie, Fang He-Nan, Lü Tao-Tao, Sun Xing-Yu. Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905

Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions

doi: 10.7498/aps.70.20201905
More Information
  • Corresponding author: Fang He-Nan, E-mail: fanghn@njupt.edu.cn
  • Received Date: 12 Nov 2020
  • Rev Recd Date: 15 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • MgO-based magnetic tunnel junction is a hot issue in the field of spin electronic devices, and its temperature and bias voltage play quite an important role in practical applications. Therefore, it is desiderated to obtain the temperature-bias phase diagram of MgO-based magnetic tunnel junction. This paper develops a theory which is suitable for magnetic tunnel junctions with single crystal barrier. In this theory, the single crystal barrier is regarded as a periodic grating, and the tunneling process is treated by optical diffraction theory, so the coherence of the tunneling electron can be well taken into account. Most importantly, the theory can handle both the temperature effect and bias effect of MgO-based magnetic tunnel junctions. According to the present theory, the temperature-bias phase diagram of MgO-based magnetic tunnel junctions is calculated under different half the exchange splittings, chemical potentials and periodic potentials. The theoretical results show that the extreme phase point of tunneling magnetoresistance (TMR) can move to high temperature region through regulating half the exchange splitting Δ of ferromagnetic electrode of MgO-based magnetic tunnel junction. This will be beneficial to the applications of magnetic tunnel junctions at room temperature. Moreover, the chemical potential μ can change the bias corresponding to the maximum phase point of TMR. As is well known, the chemical potential will vary with the material of ferromagnetic electrode. Therefore, if the material of ferromagnetic electrode is chosen with a proper chemical potential, we can obtain a large TMR under high bias voltage. In other words, the output voltage can be considerably increased. This will be favorable for the preparation of high power devices. In addition, it is found that the phase diagram of TMR is significantly dependent on periodic potential v( K h). As a result, the effects of temperature and bias voltage in the MgO-based magnetic tunnel junctions can be optimized by regulating half the exchange splitting Δ, chemical potential μ, and periodic potential v( K h). The present work provides a solid theoretical foundation for the applications of MgO-based magnetic tunnel junctions.

     

  • loading
  • [1]
    韩秀峰 2008 物理 37 392 doi: 10.3321/j.issn:0379-4148.2008.06.007

    Han X F 2008 Physics 37 392 doi: 10.3321/j.issn:0379-4148.2008.06.007
    [2]
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868 doi: 10.1038/nmat1257
    [3]
    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508 doi: 10.1063/1.2976435
    [4]
    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B S, Mahesh Y S H 2004 Nat. Mater. 3 862 doi: 10.1038/nmat1256
    [5]
    Ma Q L, Wang S G, Zhang J, Wang Y, Ward R C C, Wang C, Kohn A, Zhang X G, Han X F 2009 Appl. Phys. Lett. 95 052506 doi: 10.1063/1.3194150
    [6]
    Faure-Vincent J, Tiusan C, Jouguelet E, Canet F, Sajieddine M, Bellouard C, Hehn M, Montaigne F, Schuhl A 2003 Appl. Phys. Lett. 82 4507 doi: 10.1063/1.1586785
    [7]
    Miao G X, Chetry K B, Gupta A, Bulter W H, Tsunekawa K, Djayaprawira D Xiao G 2006 J. Appl. Phys. 99 08T305 doi: 10.1063/1.2162047
    [8]
    Ishikawa T, Marukame T, Kijima H, Matsuda K I, Uemura T, Arita M, Ymamoto M 2006 Appl. Phys. Lett. 89 192505 doi: 10.1063/1.2378397
    [9]
    Yuasa S, Fukushima A, Kubota H, Suzuki Y, Ando K 2006 Appl. Phys. Lett. 89 042505 doi: 10.1063/1.2236268
    [10]
    Hayakawa J, Ikeda S, Lee Y M, Matsukura F 2006 Appl. Phys. Lett. 89 232510 doi: 10.1063/1.2402904
    [11]
    Hu B, Moges K, Honda Y, Liu H X, Uemura T, Yamamoto M, Inoue J, Shirai M 2016 Phys. Rev. B 94 094428 doi: 10.1103/PhysRevB.94.094428
    [12]
    Slonczewski J C 1989 Phys. Rev. B 39 6995 doi: 10.1103/PhysRevB.39.6995
    [13]
    Nozaki T, Hirohata A, Tezuka N, Sugimoto S, Inomata K 2005 Appl. Phys. Lett. 86 082501 doi: 10.1063/1.1867559
    [14]
    Tanaka M A, Hori T, Mibu K, Kondou K, Ono T, Kasai S, Asaka T, Ionue J 2011 J. Appl. Phys. 110 073905 doi: 10.1063/1.3642963
    [15]
    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 Phys. Rev. B 78 180411 doi: 10.1103/PhysRevB.78.180411
    [16]
    Fang H, Zang X, Xiao M, Zhong Y, Tao Z 2020 J. Appl. Phys. 127 163902 doi: 10.1063/1.5143827
    [17]
    Fang H, Xiao M, Rui W, Du J 2018 J. Magn. Magn. Mater. 465 333 doi: 10.1016/j.jmmm.2018.06.028
    [18]
    Fang H, Xiao M, Rui W, Du J, Tao Z 2016 Sci. Rep. 6 24300 doi: 10.1038/srep24300
    [19]
    Matsumoto R, Fukushima A, Nagahama T, Suzuki Y, Ando K, Yuasa S 2007 Appl. Phys. Lett. 90 252506 doi: 10.1063/1.2750398
    [20]
    Kou X, Schmalhorst J, Thomas A, Reiss G 2006 Appl. Phys. Lett. 88 212115 doi: 10.1063/1.2206680
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views(162) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return