Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
Citation: Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936

Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate

doi: 10.7498/aps.70.20201936
More Information
  • Corresponding author: Xu Jia-Xiong, E-mail: xujiaxiong@gdut.edu.cn
  • Received Date: 17 Nov 2020
  • Rev Recd Date: 07 Jan 2021
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • The Cu2ZnSnS4 (CZTS) solar cell prepared on Si substrate has an advantage of low lattice mismatch between CZTS and Si substrate, but the conversion efficiency of reported p-CZTS/n-Si solar cells is still low at present. In this work, the CZTS solar cells on Si substrate are calculated numerically by heterojunction solar cell simulation software Afors-het. The calculated results show that the p-CZTS and n-Si act as window layer and absorber respectively in the p-CZTS/n-Si solar cell because the band gap of p-CZTS is larger than that of n-Si. The conversion efficiency of p-CZTS/n-Si solar cell increases as the thickness of p-CZTS window layer decreases. The highest calculated conversion efficiency of p-CZTS/n-Si solar cell is 18.57%. In the best p-CZTS/n-Si solar cell, most of the incident light cannot pass through the p-CZTS window layer due to the high absorption coefficient of p-CZTS, which limits the conversion efficiency of solar cell. In order to solve the problems existing in the p-CZTS/n-Si structure, a novel n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell structure is proposed, where n-ZnO:Al and i-ZnO are window layers, n-CdS is buffer layer, p-CZTS is absorber, and p-Si is substrate and back electrode. The dark current density-voltage (J-V) characteristic curves of p-CZTS/p-Si structure varying with the thickness and doping concentration of p-Si and the doping concentration of p-CZTS are calculated to investigate the feasibility of p-Si as a back electrode of p-CZTS. All the calculated J-V characteristic curves of p-CZTS/p-Si structure are linear, indicating the formation of ohmic contact between p-CZTS and p-Si. The photovoltaic properties of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell are further calculated. The built-in electric field distributed in n-ZnO:Al, i-ZnO, n-CdS, and p-CZTS contribute to the collection of photo-generated carriers. The conversion efficiency of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell is enhanced with the decrease of the thickness of p-Si and the increase of doping concentrations of p-Si and p-CZTS and the thickness of p-CZTS. Without considering the effect of parasitic series resistance and parallel resistance and defect states, the highest conversion efficiency of ideal n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell is 28.41%. The calculated results in this work show that the n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell has an appropriate structure for CZTS solar cell on Si substrate.

     

  • loading
  • [1]
    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003 doi: 10.1007/s10853-005-1223-5
    [2]
    Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554 doi: 10.1021/ja905922j
    [3]
    Todorov T, Gunawan O, Chey S J, De Monsabert T G, Prabhakar A, Mitzi D B 2011 Thin Solid Films 519 7378 doi: 10.1016/j.tsf.2010.12.225
    [4]
    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi B 245 1772 doi: 10.1002/pssb.200879539
    [5]
    Maklavani S E, Mohammadnejad S 2020 Sol. Energy 204 489 doi: 10.1016/j.solener.2020.04.096
    [6]
    Nadaraja M, Singh O P, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3925 doi: 10.1166/jnn.2020.17529
    [7]
    Akcay N, Ataser T, Ozen Y, Ozcelik S 2020 Thin Solid Films 704 138028 doi: 10.1016/j.tsf.2020.138028
    [8]
    Karade V, Lokhande A, Babar P, Gang M G, Suryawanshi M, Patil P, Kim J H 2019 Sol. Energy Mater. Sol. Cells 200 109911 doi: 10.1016/j.solmat.2019.04.033
    [9]
    Ataca C, Topsakal M, Akturk E, Ciraci S 2011 J. Phys. Chem. C 115 16354 doi: 10.1021/jp205116x
    [10]
    Song N, Young M, Liu F Y, Erslev P, Wilson S, Harvey S P, Teeter G, Huang Y D, Hao X J, Green M A 2015 Appl. Phys. Lett. 106 252102 doi: 10.1063/1.4922992
    [11]
    Xu J X, Yang Y Z, Cao Z M, Xie Z W 2016 Optik 127 1567 doi: 10.1016/j.ijleo.2015.11.048
    [12]
    Shin B H, Zhu Y, Gershon T, Bojarczuk N A, Guha S 2014 Thin Solid Films 556 9 doi: 10.1016/j.tsf.2013.12.046
    [13]
    Sheng X, Wang L, Tian Y, Luo Y P, Chang L T, Yang D R 2013 J. Mater. Sci.-Mater. Electron. 24 548 doi: 10.1007/s10854-012-0824-4
    [14]
    李琳, 文亚南, 董燕, 汪壮兵, 梁齐 2012 真空 49 45 doi: 10.3969/j.issn.1002-0322.2012.01.011

    Li L, Wen Y N, Dong Y, Wang Z B, Liang Q 2012 Vacuum 49 45 doi: 10.3969/j.issn.1002-0322.2012.01.011
    [15]
    Yeh M Y, Lei P H, Lin S H, Yang C D 2016 Materials 9 526 doi: 10.3390/ma9070526
    [16]
    Singh S, Katiyar A K, Midya A, Ghorai A, Ray S K 2017 Nanotechnology 28 435704 doi: 10.1088/1361-6528/aa81dd
    [17]
    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465 doi: 10.1002/aenm.201301465
    [18]
    Varache R, Leendertz C, Gueunier-farret M E, Haschke J, Munoz D, Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14 doi: 10.1016/j.solmat.2015.05.014
    [19]
    Amin N, Hossain M I, Chelvanathan P, Uzzaman A M, Sopian K 2010 International Conference on Electrical & Computer Engineering Dhaka, Bangladesh, December 18–20, 2010 p730
    [20]
    Jiang F, Shen H L, Wang W, Zhang L 2011 Appl. Phys. Express 4 074101 doi: 10.1143/APEX.4.074101
    [21]
    许佳雄, 姚若河 2012 物理学报 61 187304 doi: 10.7498/aps.61.187304

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 doi: 10.7498/aps.61.187304
    [22]
    Prabeesh P, Selvam I P, Potty S N 2016 Thin Solid Films 606 94 doi: 10.1016/j.tsf.2016.03.037
    [23]
    Ali K, Khan S A, Jafri M Z M 2014 Sol. Energy 101 1 doi: 10.1016/j.solener.2013.12.021
    [24]
    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032 doi: 10.1038/nenergy.2017.32
  • 加载中

Catalog

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(267) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return