Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Xu Qiang, Si Xue, She Wei-Han, Yang Guang-Min. Density functional theory study of supercapacitor for energy storage electrode materials[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
Citation: Xu Qiang, Si Xue, She Wei-Han, Yang Guang-Min. Density functional theory study of supercapacitor for energy storage electrode materials[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988

Density functional theory study of supercapacitor for energy storage electrode materials

doi: 10.7498/aps.70.20201988
More Information
  • Corresponding author: Yang Guang-Min, E-mail: 249138087@qq.com
  • Received Date: 25 Nov 2020
  • Rev Recd Date: 24 Feb 2021
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Double electric layer capacitor is a kind of supercapacitor with high power density, but has relatively low energy density. Improving the quantum capacitances of materials will be a new way to increase their total interface capacitances. We design a two-dimensional electrode material with a high specific capacity and stable crystal structure. Due to the quantum confinement effect and the density of states, the quantum capacitances of two-dimensional materials such as graphene and silicene approach to zero when they are near the Fermi level. On the basis of the first principles of density functional theory, doping and adsorption can effectively modulate the electronic structure of two-dimensional electrode material such as graphene. It promotes the formation of the local state of the electrode material near the Dirac point and/or the movement of the Fermi level, thereby improving the quantum capacitance. Compared with the quantum capacitance of Ti (Au, Ag, Cu, Al), and 3-B (N, P, S) doped single-vacancy graphene (silicene, germanene), the quantum capacitance of 3-N doped single-vacancy graphene and of Ti atom adsorbed single-vacancy silicene/germanene are both significantly improved, and their quantum capacitances are as high as 118.42 μF/cm2, 79.84 μF/cm2, and 76.54 μF/cm2. The concentration effects of 3N-doped three kinds of alkenes are studied, and the results show that the quantum capacitance is enhanced with the doping concentration increasing. It is also found by studying the thermodynamic stability of the doped systems that Ti is the most stable adsorbed atom because of the strong bond between Ti atom and C atom. The S is the most stable doping atom in B, N, P, S doped single-vacancy silicene and germanene. For graphene, N doping has the lowest formation energy and the best quantum capacitance. This study intends to clarify the controversy regarding the energy storage enhancement of two-dimensional double-layer supercapacitor materials, and to improve the quantum capacitance. The research results provide the guidance for understanding the quantum effects caused by optimizing the structure of two-dimensional electrode material. The above theoretical calculation of the mentioned two-dimensional electrode material provides some research ideas for improving the low energy density of electric double-layer supercapacitors.

     

  • loading
  • [1]
    Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J 2011 Chem. Rev. 111 3577 doi: 10.1021/cr100290v
    [2]
    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845 doi: 10.1038/nmat2297
    [3]
    Premathilake D, Outlaw R A, Parler S G, Butler S M, Miller J R 2017 Carbon 111 231 doi: 10.1016/j.carbon.2016.09.080
    [4]
    Paek E, Pak A J, Kweon K E, Hwang G S 2013 J. Phys. Chem. C 11 75610
    [5]
    Zhang L L, Zhao X, Ji H, Stoller M D, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace R M, Ruoff R S 2012 Energy Environ. Sci. 5 9618 doi: 10.1039/c2ee23442d
    [6]
    Stoller M D, Magnuson C W, Zhu Y W, Murali S, Suk J W, Piner R, Ruoff R S 2011 Energy Environ. Sci. 4 4685 doi: 10.1039/c1ee02322e
    [7]
    Jeong H M, Lee J W S, Hin W H, Choi Y J, Shin H J, Kang J K, Choi J W 2011 Nano Lett. 11 2472 doi: 10.1021/nl2009058
    [8]
    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178 doi: 10.1016/j.pmatsci.2011.03.003
    [9]
    You B, Wang L, Yao L, Yang J 2013 Chem. Commun. 49 5016 doi: 10.1039/c3cc41949e
    [10]
    Pak A J, Paek E, Hwang G S 2013 Phys. Chem. Chem. Phys. 15 19741 doi: 10.1039/C3CP52590B
    [11]
    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501 doi: 10.1103/PhysRevLett.108.245501
    [12]
    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, Van den Broek B, Fanciulli, Houssa M, Molle A 2014 Adv. Mater. 26 2096 doi: 10.1002/adma.201304783
    [13]
    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015 J. Phys. Chem. C 119 6464 doi: 10.1021/jp512176r
    [14]
    Yang G M, Xu Q, Fan X F, Zheng W T 2018 J. Phys. Chem. C 122 1903 doi: 10.1021/acs.jpcc.7b08955
    [15]
    Kresse G, Furthmüller J 1996 J. Comput. Mater. Sci. 6 15 doi: 10.1016/0927-0256(96)00008-0
    [16]
    Blöchl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953
    [17]
    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 4 66671
    [18]
    Sivek J, Sahin H, Partoens B, Peeters F M 2013 Phys. Rev. B 87 085444 doi: 10.1103/PhysRevB.87.085444
    [19]
    De Padova P, Vogt P, Resta A, Avila J, Razado-Colambo I, Quaresima C, Ottaviani C, Bruhn T, Hirahara T, Shirai T, Hasegawa S, Asensio M C, Le Lay G 2013 Appl. Phys. Lett. 102 163106 doi: 10.1063/1.4802782
    [20]
    Zhan C, Zhang Y, Cummings P T, Jiang D R 2016 Phys. Chem. Chem. Phys. 18 4668 doi: 10.1039/C5CP06952A
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(501) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return