Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
Citation: You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066

The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model

doi: 10.7498/aps.70.20202066
More Information
  • Corresponding author: Gao Xian-Long, E-mail: gaoxl@zjnu.edu.cn
  • Received Date: 06 Dec 2020
  • Rev Recd Date: 04 Jan 2021
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • We use the mean field approximation method to study the quantum phase transitions of the Jaynes-Cummings lattice model and the Rabi lattice model. The effective Hamiltonians are obtained for the JC and Rabi model including the Kerr nonlinear term. Numerically we diagonalized the Hamiltonian matrix and calculated the superfluidity order parameter and the two-photon correlation function by solving the iteration equations.
    We have explored the Mott insulating-superfluid quantum phase transition, the bunching-antibunching behavior of light, and the effect of Kerr nonlinear term on the quantum phase transition and photon statistical characteristics. Our results show that in the JC lattice model, by increasing J, a quantum phase transition takes place and the system is driven to a superfluid phase. The phase boundaries of the Mott lobes are N-dependent. However the photon will always be in a bunching statistical behavior irrelevant of the coupling strength between the two-level atom and the phonton and the nonlinear Kerr effect.
    In the Rabi lattice model, the anti-rotating wave term breaks Mott-lobe structure of the phase diagram and the increase of the two-level atom and photon interaction strength g and the photon transition strength J between the lattices drive the system from the Mott insulating phase to the superfluid phase. The photon statistical behavior changes from the bunching to the antibunching one when considering the anti-rotating wave term, which is important in the strongly coupled systems. Most interestingly, the increase of the Kerr nonlinear coefficient will inhibit the Mott insulating phase-superfluid phase transition, but favor the superfluid phase and the transition from the bunching to anti-bunching statistics.

     

  • loading
  • [1]
    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849 doi: 10.1038/nphys462
    [2]
    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856 doi: 10.1038/nphys466
    [3]
    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805 doi: 10.1103/PhysRevA.76.031805
    [4]
    Rossini D, Fazio R 2007 Phys. Rev. Lett. 99 186401 doi: 10.1103/PhysRevLett.99.186401
    [5]
    Aichhorn M, Hohenadler M, Tahan C, Littlewood P B 2008 Phys. Rev. Lett. 100 216401 doi: 10.1103/PhysRevLett.100.216401
    [6]
    Na N, Utsunomiya S, Tian L, Yamamoto Y 2008 Phys. Rev. A 77 031803 doi: 10.1103/PhysRevA.77.031803
    [7]
    Carusotto I, Gerace D, Türeci H E, De Liberato S, Ciuti C, and Imamoğlu A 2009 Phys. Rev. Lett. 103 033601 doi: 10.1103/PhysRevLett.103.033601
    [8]
    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403 doi: 10.1103/PhysRevLett.103.086403
    [9]
    Koch J, Le Hur K 2009 Phys. Rev. A 80 023811 doi: 10.1103/PhysRevA.80.023811
    [10]
    Pippan P, Evertz H G, Hohenadler M 2009 Phys. Rev. A 80 033612 doi: 10.1103/PhysRevA.80.033612
    [11]
    Ferretti S, Andreani L C, Türeci H E, Gerace D 2010 Phys. Rev. A 82 013841 doi: 10.1103/PhysRevA.82.013841
    [12]
    Umucalilar R O, Carusotto I 2011 Phys. Rev. A 84 043804 doi: 10.1103/PhysRevA.84.043804
    [13]
    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87 doi: 10.1038/nature03804
    [14]
    Tian L, Carmichael H J 1992 Phys. Rev. A 46 R6801 doi: 10.1103/PhysRevA.46.R6801
    [15]
    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467 doi: 10.1103/PhysRevLett.79.1467
    [16]
    Rebic S, Tan S M, Parkins A S, Walls D F 1999 J. Opt. B 1 490 doi: 10.1088/1464-4266/1/4/322
    [17]
    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885 doi: 10.1103/RevModPhys.80.885
    [18]
    Schmidt S, Koch J 2013 Ann. Phys. 525 395 doi: 10.1002/andp.201200261
    [19]
    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39 doi: 10.1038/415039a
    [20]
    Lundqvist S, Nilsson N B 1989 Physics of Low-dimensional Systems (Sweden: World Scientific) pp89−95
    [21]
    Fisher M P, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546 doi: 10.1103/PhysRevB.40.546
    [22]
    van Oosten D, van Der Straten P, Stoof H T C 2001 Phys. Rev. A 63 053601 doi: 10.1103/PhysRevA.63.053601
    [23]
    van Oosten D, van Der Straten P, Stoof H T C 2003 Phys. Rev. A 67 033606 doi: 10.1103/PhysRevA.67.033606
    [24]
    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257 doi: 10.1209/0295-5075/22/4/004
    [25]
    Krauth W, Trivedi N 1991 Europhys. Lett. 14 627 doi: 10.1209/0295-5075/14/7/003
    [26]
    Krauth W, Trivedi N, Ceperley D 1991 Phys. Rev. Lett. 67 2307 doi: 10.1103/PhysRevLett.67.2307
    [27]
    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602 doi: 10.1103/PhysRevA.70.045602
    [28]
    Albus A, Illuminati F, Eisert J 2003 Phys. Rev. A 68 023606 doi: 10.1103/PhysRevA.68.023606
    [29]
    Lewenstein M, Santos L, Baranov M A, Fehrmann H 2004 Phys. Rev. Lett. 92 050401 doi: 10.1103/PhysRevLett.92.050401
    [30]
    Illuminati F, Albus A 2004 Phys. Rev. Lett. 93 090406 doi: 10.1103/PhysRevLett.93.090406
    [31]
    Cramer M, Eisert J, Illuminati F 2004 Phys. Rev. Lett. 93 190405 doi: 10.1103/PhysRevLett.93.190405
    [32]
    Fehrmann H, Baranov M A, Damski B, Lewenstein M, Santos L 2004 Opt. Commun. 243 23 doi: 10.1016/j.optcom.2004.03.094
    [33]
    Littlewood P B, Eastham P R, Keeling J M J, Marchetti F M, Simons B D, Szymanska M H 2004 J. Phys. Condens. Matter 16 S3597 doi: 10.1088/0953-8984/16/35/003
    [34]
    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831 doi: 10.1103/PhysRevA.85.013831
    [35]
    Eguchi K, Takagi Y, Nakagawa T, Yokoyama T 2012 Phys. Rev. B 85 174415 doi: 10.1103/PhysRevB.85.174415
    [36]
    Vitali D, Fortunato M, Tombesi P 2000 Phys. Rev. Lett. 85 445 doi: 10.1103/PhysRevLett.85.445
    [37]
    Angelakis D G, Dai L, Kwek L C 2010 Europhys. Lett. 91 10003 doi: 10.1209/0295-5075/91/10003
    [38]
    Patargias N, Bartzis V, Jannussis A 1995 Phys. Scr. 52 554 doi: 10.1088/0031-8949/52/5/011
    [39]
    Bu S P, Zhang G F, Liu J, Chen Z Y 2008 Phys. Scr. 78 065008 doi: 10.1088/0031-8949/78/06/065008
    [40]
    Cordero S, Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502 doi: 10.1088/0953-4075/44/13/135502
    [41]
    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936 doi: 10.1364/OL.21.001936
    [42]
    Harris S E, Hau L V 1999 Phys. Rev. Lett. 82 4611 doi: 10.1103/PhysRevLett.82.4611
    [43]
    Niu Y, Gong S 2006 Phys. Rev. A 73 053811 doi: 10.1103/PhysRevA.73.053811
    [44]
    Glauber R J 1963 Phys. Rev. 130 2529 doi: 10.1103/PhysRev.130.2529
    [45]
    Gomes C B C, Almeida F A G, Souza A M C 2016 Phys. Lett. A 38 1799 doi: 10.1016/j.physleta.2016.03.018
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views(374) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return