Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
Citation: Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094

Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions

doi: 10.7498/aps.70.20202094
More Information
  • Corresponding author: Ying Peng-Zhan, E-mail: ypz3889@cumt.edu.cn; Cui Jiao-Lin, E-mail: cuijiaolin@163.com
  • Received Date: 09 Dec 2020
  • Rev Recd Date: 24 Dec 2020
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • Cu3SbSe4, one of the ternary p-type semiconductor materials with chalcopyrite structure, has aroused much interest in thermoelectrics due to its inherent large effective mass and narrow bandgap. Therefore, many researches have been done, which cover the single and/or multi-element doping to manipulate its band structure and introduce the point defects. Although great achievements have been made in recent years, the mechanism in Cu3SbSe4 with respect to the phonon and electronic transport properties needs further investigating.
    In this work, first, Sn and S are co-doped into Cu3SbSe4 and then the resulting compound is alloyed with Ga2Te3, to improve its TE performance and understand the mechanism by calculating the band structure and crystal structure. The calculation of band structure reveals that an impurity band is created within the bandgap after co-doping Sn and S due to their contributions to the density of the states (DOS), which is directly responsible for the significant improvement in carrier concentration (nH) and electrical property. Therefore, the power factor (PF) is enhanced from 0.52 × 10–3 to 1.3 × 10–3 W·m–1·K–2.
    Although the effect associated with the Ga (Te) residing at Sb (Se) sites on the band structure is limited due to the fact that both the single Ga- and single Te-doped band structure remain almost unchanged, the structural parameters (bond lengths and angles) of the polyhedrons [SeCu3Sb] and [SbSe4] before and after Te and Ga residing at Se and Sb sites respectively change remarkably. This yields the significant distortion of local lattice structure on an atomic scale. Therefore, the phonon scattering is enhanced and the lattice thermal conductivity (κL) decreases from 1.23 to 0.81 W·K–1·m–1 at 691 K. The reduction in κL prevents the total thermal conductivity (κ) from being enhanced rapidly. As a consequence, the highest ZT value of 0.64 is attained, which is much higher than that of the pristine Cu3SbSe4 (ZT = 0.26). In addition, we not only present a synergistic strategy to separately optimize the phonon and electronic properties, but also fully elaborate its mechanism and better understand that this strategy is an effective way to improve the TE performance of the Cu3SbSe4-based solid solutions.

     

  • loading
  • [1]
    Wei T, Wang H, Gibbs Z, Wu C, Snyder G J, Li J 2014 J. Mater. Chem. A 2 13527 doi: 10.1039/C4TA01957A
    [2]
    Zhang D, Yang J Y, Jiang Q H, Zhou Z W, Li X, Xin J W, Basit A, Ren Y Y, He X, Chu W J, Hou J D 2017 ACS Appl. Mater. Interfaces 9 28558 doi: 10.1021/acsami.7b08121
    [3]
    陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 物理学报 66 167201 doi: 10.7498/aps.66.167201

    Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201 doi: 10.7498/aps.66.167201
    [4]
    Zhao D G, Wu D, Bo L 2017 Energies 10 1524 doi: 10.3390/en10101524
    [5]
    Chang C H, Chen C L, Chiu W T, Chen Y Y 2017 Mater. Lett. 186 227 doi: 10.1016/j.matlet.2016.10.011
    [6]
    Zhang D, Yang J Y, Jiang Q H, Fu L W, Xiao Y, Luo Y B, Zhou Z W 2016 Mater. Des. 98 150 doi: 10.1016/j.matdes.2016.03.001
    [7]
    Li Y Y, Qin X Y, Li D, Li X Y, Liu Y F, Zhang J, Song C J, Xin H X 2015 RSC Adv. 5 31399 doi: 10.1039/C5RA02030A
    [8]
    Yang C Y, Huang F Q, Wu L M, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404 doi: 10.1088/0022-3727/44/29/295404
    [9]
    Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2019 Mater. Res. Bull. 113 38 doi: 10.1016/j.materresbull.2019.01.010
    [10]
    Prasad K S, Rao A 2019 J. Mater. Sci. - Mater. Electron. 30 16596 doi: 10.1007/s10854-019-02038-w
    [11]
    Wang B Y, Wang Y L, Zheng S Q, Liu S C, Li J, Chang S Y, An T, Sun W L, Chen Y X 2019 J. Alloys Compd. 806 676 doi: 10.1016/j.jallcom.2019.07.292
    [12]
    Skoug E J, Cain J D, Morelli D T 2011 Appl. Phys. Lett. 98 261911
    [13]
    Zhang D, Yang J Y, Bai H C, Luo Y B, Wang B, Hou S H, Li Z L, Wang S F 2019 J. Mater. Chem. A 7 17648 doi: 10.1039/C9TA05115E
    [14]
    Wang B Y, Zheng S Q, Chen Y X, Wu Y, Li J, Ji Z, Mu Y N, Wei Z B, Liang Q, Liang J X 2020 J. Phys. Chem. C 124 10336 doi: 10.1021/acs.jpcc.0c01465
    [15]
    Li J M, Li D, Song C J, Wang L, Xin H X, Zhang J, Qin X Y 2019 Intermetallics 109 68 doi: 10.1016/j.intermet.2019.03.009
    [16]
    Zhou T, Wang L J, Zheng S Q, Hong M, Fang T, Bai P P, Chang S Y, Cui W L, Shi X L, Zhao H Z, Chen Z G 2018 Nano Energy 49 221 doi: 10.1016/j.nanoen.2018.04.035
    [17]
    Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2020 Nano Energy 71 104658 doi: 10.1016/j.nanoen.2020.104658
    [18]
    Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L, Xin H X 2013 CrystEngComm 15 7166 doi: 10.1039/c3ce40956b
    [19]
    Li D, Ming H W, Li J M, Jabar B, Xu W, Zhang J, Qin X Y 2020 ACS Appl. Mater. Interfaces 12 3886 doi: 10.1021/acsami.9b20103
    [20]
    Xie D D, Zhang B, Zhang A J, Chen Y J, Yan Y C, Yang H Q, Wang G W, Wang G Y, Han H D, Han G, Lu X, Zhou X Y 2018 Nanoscale 10 14546 doi: 10.1039/C8NR03550D
    [21]
    Garcia G, Palacios P, Cabot A, Wahnon P 2018 Inorg. Chem. 57 7321 doi: 10.1021/acs.inorgchem.8b00980
    [22]
    Do D T, Mahanti D 2015 J. Alloys Compd. 625 346 doi: 10.1016/j.jallcom.2014.11.031
    [23]
    Skoug E J, Cain J D, Morelli D T 2010 Appl. Phys. Lett. 96 181905 doi: 10.1063/1.3425886
    [24]
    Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York: Springer) p37
    [25]
    Min L, Ying P Z, Li X, Cui J L 2020 J. Phys. D: Appl. Phys. 53 075304 doi: 10.1088/1361-6463/ab590e
    [26]
    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101 doi: 10.1063/1.2940591
    [27]
    Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464 doi: 10.1039/C6TA06033A
    [28]
    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. A 66 133 doi: 10.1080/01418619208201518
    [29]
    Kim H, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506 doi: 10.1063/1.4908244
    [30]
    Blochl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953
    [31]
    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169 doi: 10.1103/PhysRevB.54.11169
    [32]
    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-0256(96)00008-0
    [33]
    Pulay P 1980 Chem. Phys. Lett. 73 393 doi: 10.1016/0009-2614(80)80396-4
    [34]
    Zeier W G, Pei Y Z, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726 doi: 10.1021/ja308627v
    [35]
    Zhao L L, Lin N M, Han Z K, Li X, Wang H Y, Cui J L 2019 Adv. Electron. Mater 5 1900485 doi: 10.1002/aelm.201900485
    [36]
    Moreno E, Quintero M, Morocoima M, Quintero E, Grima P, Tovar R, Bocaranda P, Delgado G E, Contreras J E, Mora A E, Briceño J M, Godoy R A, Fernandez J L, Henao J A, Macías M A 2009 J. Alloys Compd. 486 212 doi: 10.1016/j.jallcom.2009.07.066
    [37]
    Cui J L, He T T, Han Z K, Liu X L, Du Z L 2018 Sci. Rep. 8 8202 doi: 10.1038/s41598-018-26362-z
    [38]
    Do D T, Mahanti S D 2014 J. Phys. Chem. Solids 75 477 doi: 10.1016/j.jpcs.2013.12.004
    [39]
    Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512 doi: 10.1021/cm703661g
    [40]
    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510 doi: 10.1039/C1EE02612G
    [41]
    Wiendlocha B, Vaney J B, Candolfi C, Dauscher A, Lenoir B, Tobola J 2018 Phys. Chem. Chem. Phys. 20 12948 doi: 10.1039/C8CP00431E
    [42]
    Li M, Luo Y, Cai G M, Li X, Li X Y, Han Z K, Lin X Y, Sarker D, Cui J L 2019 J. Mater. Chem. A 7 2360 doi: 10.1039/C8TA10741F
    [43]
    Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592 doi: 10.1021/acs.nanolett.7b03933
    [44]
    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125 doi: 10.1002/adma.201202919
    [45]
    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882 doi: 10.1103/PhysRevB.29.1882
    [46]
    Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W, Cui J 2013 Appl. Phys. Lett. 103 011905 doi: 10.1063/1.4813088
    [47]
    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822 doi: 10.1103/PhysRevB.28.5822
  • 加载中

Catalog

    Figures(6)

    Article Metrics

    Article views(168) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return